I am a
Home I AM A Search Login

Accepted

Share this

Pharmacological interventions for chronic pain in children: an overview of systematic reviews.

We know little about the safety or efficacy of pharmacological medicines for children and adolescents with chronic pain, despite their common use. Our aim was to conduct an overview review of systematic reviews of pharmacological interventions that purport to reduce pain in children with chronic non-cancer pain or chronic cancer-related pain. We searched the Cochrane Database of Systematic Reviews, Medline, EMBASE and DARE for systematic reviews from inception to March 2018. We conducted reference and citation searches of included reviews. We included children (0-18 years of age) with chronic non-cancer pain or chronic cancer-related pain. We extracted the review characteristics and primary outcomes of ≥30% participant-reported pain relief and patient global impression of change. We sifted 704 abstracts and included 23 systematic reviews investigating children with chronic non-cancer pain or chronic cancer-related pain. Seven of those 23 reviews included six trials that involved children with chronic non-cancer pain. There were no RCTs in reviews relating to reducing pain in chronic cancer-related pain. We were unable to combine data in a meta-analysis. Overall, the quality of evidence was very low and we have very little confidence in the effect estimates. The state of evidence of randomized controlled trials in this field is poor; we have no evidence from randomised controlled trials for pharmacological interventions in children with cancer-related pain, yet cannot deny individual children access to potential pain relief. Prospero ID: CRD42017081205. A video accompanying this abstract is available online as Supplemental Digital Content at http://links.lww.com/PAIN/A797.

Learn More >

Pyrazine-Fused Triterpenoids Block the TRPA1 Ion Channel in Vitro and Inhibit TRPA1-Mediated Acute Inflammation in Vivo.

TRPA1 is a nonselective cation channel, most famously expressed in nonmyelinated nociceptors. In addition to being an important chemical and mechanical pain sensor, TRPA1 has more recently appeared to have a role also in inflammation. Triterpenoids are natural products with anti-inflammatory and anticancer effects in experimental models. In this paper, 13 novel triterpenoids were created by synthetically modifying betulin, an abundant triterpenoid of the genus Betula L., and their TRPA1-modulating properties were examined. The Fluo 3-AM protocol was used in the initial screening, in which six of the 14 tested triterpenoids inhibited TRPA1 in a statistically significant manner. In subsequent whole-cell patch clamp recordings, the two most effective compounds (pyrazine-fused triterpenoids 8 and 9) displayed a reversible and dose- and voltage-dependent effect to block the TRPA1 ion channel at submicromolar concentrations. Interestingly, the TRPA1 blocking action was also evident in vivo, as compounds 8 and 9 both alleviated TRPA1 agonist-induced acute paw inflammation in mice. The results introduce betulin-derived pyrazine-fused triterpenoids as promising novel antagonists of TRPA1 that are potentially useful in treating diseases with a TRPA1-mediated adverse component.

Learn More >

Reversal of peripheral neuropathic pain by the small-molecule natural product physalin F via block of CaV2.3 (R-type) and CaV2.2 (N-type) voltage-gated calcium channels.

No universally efficacious therapy exists for chronic pain, a disease affecting one-fifth of the global population. An overreliance in the prescription of opioids for chronic pain despite their poor ability to improve function has led to a national opioid crisis. In 2018, the NIH launched a Helping to End Addiction Long-term plan to spur discovery and validation of novel targets and mechanisms to develop alternative non-addictive treatment options. Phytochemicals with medicinal properties have long been used for various treatments worldwide. The natural product physalin F, isolated from the Physalis acutifolia (family: Solanaceae) herb, demonstrated antinociceptive effects in models of inflammatory pain, consistent with earlier reports of its anti-inflammatory and immunomodulatory activities. However, the target of action of physalin F remained unknown. Here, using whole-cell and slice electrophysiology, competition binding assays, and experimental models of neuropathic pain, we uncovered a molecular target for physalin F's antinociceptive actions. We found that physalin F: (i) blocks CaV2.3 (R-type) and CaV2.2 (N-type) voltage-gated calcium channels in dorsal root ganglion (DRG) neurons; (ii) does not affect CaV3 (T-type) voltage-gated calcium channels or voltage-gated sodium or potassium channels; (iii) does not bind G-protein coupled opioid receptors; (iv) inhibits the frequency of spontaneous excitatory postsynaptic currents (EPSCs) in spinal cord slices; and (v) reverses tactile hypersensitivity in models of paclitaxel-induced peripheral neuropathy and spinal nerve ligation. Identifying CaV2.2 as a molecular target of physalin F may spur its use as a tool for mechanistic studies and position it as a structural template for future synthetic compounds.

Learn More >

Relative effectiveness of different forms of exercises for treatment of chronic low back pain: protocol for a systematic review incorporating Bayesian network meta-analysis.

Exercise is considered as an effective intervention in the management of patients with chronic low back pain (cLBP). However, the relative effectiveness as well as the hierarchy of exercise interventions have not been well established, although various exercise options are available. Therefore, the present protocol proposes to conduct a network meta-analysis (NMA) aiming to evaluate the effectiveness of different forms of exercise for treatment of cLBP.

Learn More >

A Meta-Epidemiological Appraisal of the Effects of Interdisciplinary Multimodal Pain Therapy Dosing for Chronic Low Back Pain.

Using a meta-analysis, meta-regression, and a meta-epidemiological approach, we conducted a systematic review to examine the influence of interdisciplinary multimodal pain therapy (IMPT) dosage on pain, disability, return to work, quality of life, depression, and anxiety in published randomised controlled trials (RCTs) in patients with non-specific chronic low back pain (CLBP). We considered all RCTs of IMPT from a Cochrane review and searched PubMed for additional RCTs through 30 September 2018. A subgroup random-effects meta-analysis by length, contact, and intensity of treatment was performed followed by a meta-regression analysis. Using random and fixed-effect models and a summary relative odds ratio (ROR), we compared the effect sizes (ES) from short-length, non-daily contact, and low-intensity RCTs with long-length, daily contact, and high-intensity RCTs. Heterogeneity was quantified with the I metric. A total of 47 RCTs were selected. Subgroup meta-analysis showed that there were larger ES for pain and disability in RCTs with long-length, non-daily contact, and low intensity of treatment. Larger ES were also observed for quality of life in RCTs with short-length, non-daily contact, and low intensity treatment. However, these findings were not confirmed by the meta-regression analysis. Likewise, the summary RORs were not significant, indicating that the length, contact, and intensity of treatment did not have an overall effect on the investigated outcomes. For the outcomes investigated here, IMPT dosage is not generally associated with better ES, and an optimal dosage was not determined.

Learn More >

Calretinin positive neurons form an excitatory amplifier network in the spinal cord dorsal horn.

Learn More >

Direct Gα Gating Is the Sole Mechanism for TRPM8 Inhibition Caused by Bradykinin Receptor Activation.

Activation of Gα-coupled receptors by inflammatory mediators inhibits cold-sensing TRPM8 channels, aggravating pain and inflammation. Both Gα and the downstream hydrolysis of phosphatidylinositol 4, 5-bisphosphate (PIP) inhibit TRPM8. Here, I demonstrate that direct Gα gating is essential for both the basal cold sensitivity of TRPM8 and TRPM8 inhibition elicited by bradykinin in sensory neurons. The action of Gα depends on binding to three arginine residues in the N terminus of TRPM8. Neutralization of these residues markedly increased sensitivity of the channel to agonist and membrane voltage and completely abolished TRPM8 inhibition by both Gα and bradykinin while sparing the channel sensitivity to PIP. Interestingly, the bradykinin receptor B2R also binds to TRPM8, rendering TRPM8 insensitive to PIP depletion. Furthermore, TRPM8-Gα binding impaired Gα coupling and signaling to PLCβ-PIP. The crosstalk in the TRPM8-Gα-B2R complex thus determines Gα gating rather than PIP as a sole means of TRPM8 inhibition by bradykinin.

Learn More >

Neuronal FcγRI mediates acute and chronic joint pain.

Although joint pain in rheumatoid arthritis (RA) is conventionally thought to result from inflammation, arthritis pain and joint inflammation are at least partially uncoupled. This suggests that additional pain mechanisms in RA remain to be explored. Here we show that FcγRI, an immune receptor for IgG immune complex (IgG-IC), is expressed in a subpopulation of joint sensory neurons and that, under naïve conditions, FcγRI crosslinking by IgG-IC directly activates the somata and peripheral terminals of these neurons to evoke acute joint hypernociception without obvious concurrent joint inflammation. These effects were diminished in both global and sensory neuron-specific Fcgr1 knockout mice. In murine models of inflammatory arthritis, FcγRI signaling was upregulated in joint sensory neurons. Acute blockade or global genetic deletion of Fcgr1 significantly attenuated arthritis pain and hyperactivity of joint sensory neurons without measurably altering joint inflammation. Conditional deletion of Fcgr1 in sensory neurons produced similar analgesic effects in these models. We therefore suggest that FcγRI expressed in sensory neurons contributes to arthritis pain independently of its functions in inflammatory cells. These findings expand our understanding of the immunosensory capabilities of sensory neurons and imply that neuronal FcγRI merits consideration as a target for treating RA pain.

Learn More >

A Subset of Skin Macrophages Contributes to the Surveillance and Regeneration of Local Nerves.

The skin comprises tissue macrophages as the most abundant resident immune cell type. Their diverse tasks including resistance against invading pathogens, attraction of bypassing immune cells from vessels, and tissue repair require dynamic specification. Here, we delineated the postnatal development of dermal macrophages and their differentiation into subsets by adapting single-cell transcriptomics, fate mapping, and imaging. Thereby we identified a phenotypically and transcriptionally distinct subset of prenatally seeded dermal macrophages that self-maintained with very low postnatal exchange by hematopoietic stem cells. These macrophages specifically interacted with sensory nerves and surveilled and trimmed the myelin sheath. Overall, resident dermal macrophages contributed to axon sprouting after mechanical injury. In summary, our data show long-lasting functional specification of macrophages in the dermis that is driven by stepwise adaptation to guiding structures and ensures codevelopment of ontogenetically distinct cells within the same compartment.

Learn More >

Profile of David D. Ginty.

Learn More >

Search