I am a
Home I AM A Search Login

Accepted

Share this

Nerve injury drives a heightened state of vigilance and neuropathic sensitization in Drosophila.

Injury can lead to devastating and often untreatable chronic pain. While acute pain perception (nociception) evolved more than 500 million years ago, virtually nothing is known about the molecular origin of chronic pain. Here we provide the first evidence that nerve injury leads to chronic neuropathic sensitization in insects. Mechanistically, peripheral nerve injury triggers a loss of central inhibition that drives escape circuit plasticity and neuropathic allodynia. At the molecular level, excitotoxic signaling within GABAergic (γ-aminobutyric acid) neurons required the acetylcholine receptor and led to caspase-dependent death of GABAergic neurons. Conversely, disruption of GABA signaling was sufficient to trigger allodynia without injury. Last, we identified the conserved transcription factor twist as a critical downstream regulator driving GABAergic cell death and neuropathic allodynia. Together, we define how injury leads to allodynia in insects, and describe a primordial precursor to neuropathic pain may have been advantageous, protecting animals after serious injury.

Learn More >

Pain and immunity: implications for host defence.

Pain is a hallmark of tissue injury, inflammatory diseases, pathogen invasion and neuropathy. It is mediated by nociceptor sensory neurons that innervate the skin, joints, bones, muscles and mucosal tissues and protects organisms from noxious stimuli. Nociceptors are sensitized by inflammatory mediators produced by the immune system, including cytokines, lipid mediators and growth factors, and can also directly detect pathogens and their secreted products to produce pain during infection. Upon activation, nociceptors release neuropeptides from their terminals that potently shape the function of innate and adaptive immune cells. For some pathogens, neuron-immune interactions enhance host protection from infection, but for other pathogens, neuron-immune signalling pathways can be exploited to facilitate pathogen survival. Here, we discuss the role of nociceptor interactions with the immune system in pain and infection and how understanding these pathways could produce new approaches to treat infectious diseases and chronic pain.

Learn More >

A combination pharmacotherapy of tapentadol and pregabalin to tackle centrally driven Osteoarthritis pain.

Many Osteoarthritis (OA) patients report with clinical features to their pain that cannot be explained by purely peripheral mechanisms. Yet, the analgesic agents available that tackle centrally driven chronic pain often provide only partial pain relief, or have dose-limiting side effects. We explored a combination therapy of the centrally acting analgesic agents tapentadol and pregabalin, to investigate if they could be used in combination to provide superior analgesia.

Learn More >

Potential biomarkers for persistent and neuropathic pain therapy.

Persistent, in particular neuropathic pain affects millions of people worldwide. However, the response rate of patients to existing analgesic drugs is less than 50%. There are several possibilities to increase this response rate, such as optimization of the pharmacokinetic and pharmacodynamic properties of analgesics. Another promising approach is to use prognostic biomarkers in patients to determine the optimal pharmacological therapy for each individual. Here, we discuss recent efforts to identify plasma and CSF biomarkers, as well as genetic biomarkers and sensory testing, and how these readouts could be exploited for the prediction of a suitable pharmacological treatment. Collectively, the information on single biomarkers may be stored in knowledge bases and processed by machine-learning and related artificial intelligence techniques, resulting in the optimal pharmacological treatment for individual pain patients. We highlight the potential for biomarker-based individualized pain therapies and discuss biomarker reliability and their utility in clinical practice, as well as limitations of this approach.

Learn More >

Layer- and subregion-specific electrophysiological and morphological changes of the medial prefrontal cortex in a mouse model of neuropathic pain.

Chronic neuropathic pain constitutes a serious public health problem, but the disease mechanisms are only partially understood. The involvement of different brain regions like the medial prefrontal cortex has already been established, but the comparison of the role of different subregions and layers is still inconclusive. In the current study, we performed patch-clamp recordings followed by anatomical reconstruction of pyramidal cells from different layers of the prelimbic and infralimbic subregions of the medial prefrontal cortex in neuropathic (spared nerve injury, SNI) and control mice. We found that in the prelimbic cortex, layer 2/3 pyramidal cells from SNI mice exhibited increased excitability compared to sham controls, whereas prelimbic layer 5 pyramidal neurons showed reduced excitability. Pyramidal cells in both layer 2/3 and layer 5 of the infralimbic subregion did not change their excitability, but layer 2/3 pyramidal cells displayed increased dendritic length and branching. Our findings support the view that chronic pain is associated with subregion- and layer-specific changes in the medial prefrontal cortex. They therefore provide new insights into the mechanisms underlying the chronification of pain.

Learn More >

Voltage-gated sodium channels: structures, functions, and molecular modeling.

Voltage-gated sodium channels (VGSCs), formed by 24 transmembrane segments arranged into four domains, have a key role in the initiation and propagation of electrical signaling in excitable cells. VGSCs are involved in a variety of diseases, including epilepsy, cardiac arrhythmias, and neuropathic pain, and, therefore, have been regarded as appealing therapeutic targets for the development of anticonvulsant, antiarrhythmic, and local anesthetic drugs. In this review, we discuss recent advances in understanding the structures and biological functions of VGSCs. In addition, we systematically summarize eight pharmacologically distinct ligand-binding sites in VGSCs and representative isoform-selective VGSC modulators in clinical trials. Finally, we review studies on molecular modeling and computer-aided drug design (CADD) for VGSCs to help understanding of biological processes involving VGSCs.

Learn More >

Network and pathway-based analysis of microRNA role in neuropathic pain in rat models.

The molecular mechanisms underlying neuropathic pain (NP) remain poorly understood. Emerging evidence has suggested the role of microRNAs (miRNAs) in the initiation and development of NP, but the specific effects of miRNAs in NP are largely unknown. Here, we use network- and pathway-based methods to investigate NP-induced miRNA changes and their biological functions by conducting a systematic search through multiple electronic databases. Thirty-seven articles meet the inclusion criteria. Venn analysis and target gene forecasting are performed and the results indicate that 167 overlapping target genes are co-regulated by five down-regulated miRNAs (rno-miR-183, rno-miR-96, rno-miR-30b, rno-miR-150 and rno-miR-206). Protein-protein interaction network analysis shows that 77 genes exhibit interactions, with cyclic adenosine monophosphate (cAMP)-dependent protein kinase catalytic subunit beta (degree = 11) and cAMP-response element binding protein 1 (degree = 10) having the highest connectivity degree. Gene ontology analysis shows that these target genes are enriched in neuron part, neuron projection, somatodendritic compartment and nervous system development. Moreover, analysis of Kyoto Encyclopedia of Genes and Genomes reveals that three pathways, namely, axon guidance, circadian entrainment and insulin secretion, are significantly enriched. In addition, rno-miR-183, rno-miR-96, rno-miR-30b, rno-miR-150 and rno-miR-206 are consistently down-regulated in the NP models, thus constituting the potential biomarkers of this disease. Characterizing these miRNAs and their target genes paves way for their future use in clinical practice.

Learn More >

Inhibition of MicroRNA-195 Alleviates Neuropathic Pain by Targeting Patched1 and Inhibiting SHH Signaling Pathway Activation.

Trigeminal neuralgia (TN) is a type of chronic neuropathic pain that is caused by peripheral nerve lesions that result from various conditions, including the compression of vessels, tumors and viral infections. MicroRNAs (miRs) are increasingly recognized as potential regulators of neuropathic pain. Previous evidence has demonstrated that miR-195 is involved in neuropathic pain, but the mechanism remains unclear. To investigate the pathophysiological role of miR-195 and Shh signaling in TN, persistent facial pain was induced by infraorbital nerve chronic constriction injury (CCI-IoN), and facial pain responses were evaluated by Von Frey hairs. qPCR and Western blotting were used to determine the relative expression of miR-195 and Patched1, the major receptor of the Sonic Hedgehog (Shh) signaling pathway, in the caudal brain stem at distinct time points after CCI-IoN. Here, we found that the expression of miR-195 was increased in a rat model of CCI-IoN. In contrast, the expression of Patched1 decreased significantly. Luciferase assays confirmed the binding of miR-195 to Patched1. In addition, the overexpression of miR-195 by an intracerebroventricular (i.c.v) administration of LV-miR-195 aggravated facial pain development, and this was reversed by upregulating the expression of Patched1. These results suggest that miR-195 is involved in the development of TN by targeting Patched1 in the Shh signaling pathway, thus regulating extracellular glutamate.

Learn More >

Incidence and risk factors for development of persistent postsurgical pain following total knee arthroplasty: A retrospective cohort study.

Persistent postsurgical pain (PPP) is defined as the discomfort that lasts >3 months postoperatively. The primary aim of this retrospective study was to estimate the risk of developing moderate-to-severe PPP after primary total knee arthroplasty (TKA). The secondary goal was to explore potential predictors of this outcome.Data were collected via hospital arthroplasty registry and chart review. The risk of moderate-to-severe PPP, defined as ≥4 on the numerical rating scale (NRS) at minimum of 3 months post-surgery, was calculated. Multivariable logistic regression was used to estimate the association of patient demographics, diagnoses, length of hospital stay, and preoperative NRS with the odds of developing PPP. Exploratory, simple logistic regression was used to estimate the association of perioperative factors with the odds of developing PPP on a subset of patients (n = 72).The risk of PPP after TKA was 31.3% (95% confidence interval [CI]: 27.5-35.0) (n = 578). Every 2-point increase in baseline NRS was associated with 1.66 (95% CI: 1.37-2.03) times the odds of developing PPP (P < .001). African-Americans (vs whites) had 1.82 (95% CI: 1.03-3.22) times the odds of developing PPP (P = .040). Exploratory analysis suggested that the adductor canal saphenous nerve (vs femoral nerve) blocks were associated with 2.87 (95% CI: 1.00-8.26) times the odds of developing PPP (P = .049).This study estimated a high risk (31.3%) of moderate-to-severe PPP after primary TKA. This study suggested that higher preoperative pain scores might be associated with greater odds of developing PPP. Moreover, this study suggested the possibility that racial differences and types of peripheral nerve blocks might be associated with greater odds of developing moderate-to-severe PPP after TKA surgery. However, the evidence obtained from our exploratory analysis of limited data certainly requires further exploration in large-scale studies.

Learn More >

Kappa Opioid Signaling in the Right Central Amygdala Causes Hindpaw Specific Loss of Diffuse Noxious Inhibitory Controls (DNIC) in Experimental Neuropathic Pain.

Diffuse noxious inhibitory controls (DNIC) is a pain inhibits pain phenomenon demonstrated in humans and animals. DNIC is diminished in many chronic pain states, including neuropathic pain. The efficiency of DNIC has been suggested to prospectively predict both the likelihood of pain chronification and treatment response. Little is known as to why DNIC is dysfunctional in neuropathic pain. Here, we evaluated DNIC in the rat L5/L6 spinal nerve ligation (SNL) model of chronic pain using both behavioral and electrophysiological outcomes. For behavior, nociceptive thresholds were determined using response to noxious paw pressure on both hindpaws as the test stimulus before, and after, injection of a conditioning stimulus of capsaicin into the left forepaw. Functionally, the spike firing of spinal wide dynamic range (WDR) neuronal activity was evaluated before and during noxious ear pinch, whilst stimulating the ipsilateral paw with von Frey hairs of increased bending force. In both assays, the DNIC response was significantly diminished in the ipsilateral (i.e., injured) paw of SNL animals. However, behavioral loss of DNIC was not observed on the contralateral (i.e., uninjured) paw. Systemic application of nor-Binaltorphimine (nor-BNI), a kappa opioid antagonist, did not ameliorate SNL-induced hyperalgesia but reversed loss of the behavioral DNIC response. Microinjection of nor-BNI into the right central amygdala (RCeA) of SNL rats did not affect baseline thresholds but restored DNIC both behaviorally and electrophysiologically. Cumulatively, these data suggest that net enhanced descending facilitations may be mediated by kappa opioid receptor signaling from the RCeA to promote diminished DNIC following neuropathy.

Learn More >

Search