I am a
Home I AM A Search Login

Accepted

Share this

Structure-guided examination of the mechanogating mechanism of PIEZO2.

Piezo channels are mechanically activated ion channels that confer mechanosensitivity to a variety of different cell types. Piezos oligomerize as propeller-shaped homotrimers that are thought to locally curve the membrane into spherical domes that project into the cell. While several studies have identified domains and amino acids that control important properties such as ion permeability and selectivity as well as inactivation kinetics and voltage sensitivity, only little is known about intraprotein interactions that govern mechanosensitivity-the most unique feature of PIEZOs. Here we used site-directed mutagenesis and patch-clamp recordings to investigate the mechanogating mechanism of PIEZO2. We demonstrate that charged amino acids at the interface between the beam domain-i.e., a long α-helix that protrudes from the intracellular side of the "propeller" blade toward the inner vestibule of the channel-and the C-terminal domain (CTD) as well as hydrophobic interactions between the highly conserved Y2807 of the CTD and pore-lining helices are required to ensure normal mechanosensitivity of PIEZO2. Moreover, single-channel recordings indicate that a previously unrecognized intrinsically disordered domain located adjacent to the beam acts as a cytosolic plug that limits ion permeation possibly by clogging the inner vestibule of both PIEZO1 and PIEZO2. Thus, we have identified several intraprotein domain interfaces that control the mechanical activation of PIEZO1 and PIEZO2 and which might thus serve as promising targets for drugs that modulate the mechanosensitivity of Piezo channels.

Learn More >

Neuropathy with vascular endothelial growth factor receptor tyrosine kinase inhibitors.

To explore the association of peripheral neuropathy with vascular endothelial growth factor receptor tyrosine kinase inhibitors (VEGFR-TKIs) use in patients with cancer.

Learn More >

Randomised controlled trial to investigate the effectiveness of thoracic epidural and paravertebral blockade in reducing chronic post-thoracotomy pain (TOPIC): a pilot study to assess feasibility of a large multicentre trial.

Thoracotomy is considered one of the most painful surgical procedures. The incidence of chronic post-thoracotomy pain (CPTP) is up to 50%. Paravertebral blockade (PVB) may be superior to thoracic epidural blockade (TEB) in preventing CPTP. The specific objective of this pilot study was to assess the feasibility of conducting a larger trial to determine whether PVB at thoracotomy is more effective in reducing CPTP compared with TEB.

Learn More >

Excitatory neurons are more disinhibited than inhibitory neurons by chloride dysregulation in the spinal dorsal horn.

Learn More >

Defining a Spinal Microcircuit that Gates Myelinated Afferent Input: Implications for Tactile Allodynia.

Chronic pain presents a major unmet clinical problem. The development of more effective treatments is hindered by our limited understanding of the neuronal circuits underlying sensory perception. Here, we show that parvalbumin (PV)-expressing dorsal horn interneurons modulate the passage of sensory information conveyed by low-threshold mechanoreceptors (LTMRs) directly via presynaptic inhibition and also gate the polysynaptic relay of LTMR input to pain circuits by inhibiting lamina II excitatory interneurons whose axons project into lamina I. We show changes in the functional properties of these PV interneurons following peripheral nerve injury and that silencing these cells unmasks a circuit that allows innocuous touch inputs to activate pain circuits by increasing network activity in laminae I-IV. Such changes are likely to result in the development of tactile allodynia and could be targeted for more effective treatment of mechanical pain.

Learn More >

Botulinum toxin for chronic pelvic pain in women with endometriosis: a cohort study of a pain-focused treatment.

Many women with endometriosis continue to have pelvic pain despite optimal surgical and hormonal treatment; some also have palpable pelvic floor muscle spasm. We describe changes in pain, spasm, and disability after pelvic muscle onabotulinumtoxinA injection in women with endometriosis-associated pelvic pain, a specific population not addressed in prior pelvic pain studies on botulinum toxin.

Learn More >

Sodium Channels in Human Pain Disorders: Genetics and Pharmacogenomics.

Acute pain is adaptive, but chronic pain is a global challenge. Many chronic pain syndromes are peripheral in origin and reflect hyperactivity of peripheral pain-signaling neurons. Current treatments are ineffective or only partially effective and in some cases can be addictive, underscoring the need for better therapies. Molecular genetic studies have now linked multiple human pain disorders to voltage-gated sodium channels, including disorders characterized by insensitivity or reduced sensitivity to pain and others characterized by exaggerated pain in response to normally innocuous stimuli. Here, we review recent developments that have enhanced our understanding of pathophysiological mechanisms in human pain and advances in targeting sodium channels in peripheral neurons for the treatment of pain using novel and existing sodium channel blockers. Expected final online publication date for the Annual Review of Neuroscience Volume 42 is July 8, 2019. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Learn More >

A Multimodal Approach to Pain Management for Patients with Chronic Back Pain: Outcome Measures at 1 Year.

The purpose of this study is to evaluate the effectiveness of a multimodal approach to treating chronic low back pain.

Learn More >

Emerging Novel Pharmacological Non-opioid Therapies in Headache Management: a Comprehensive Review.

Chronic headache is a significant worldwide problem despite advances in treatment options. Chronic headaches can have significant a detrimental impact on the activities of daily living.

Learn More >

Scratching Counteracts IL-13 Signaling by Upregulating the Decoy Receptor IL-13Rα2 in Keratinocytes.

The vicious itch-scratch cycle is a cardinal feature of atopic dermatitis (AD), in which IL-13 signaling plays a dominant role. Keratinocytes express two receptors: The heterodimeric IL-4Rα/IL-13Rα1 and IL-13Rα2. The former one transduces a functional IL-13 signal, whereas the latter IL-13Rα2 works as a nonfunctional decoy receptor. To examine whether scratch injury affects the expression of IL-4Rα, IL-13Rα1, and IL-13Rα2, we scratched confluent keratinocyte sheets and examined the expression of three IL-13 receptors using quantitative real-time PCR (qRT-PCR) and immunofluorescence techniques. Scratch injuries significantly upregulated the expression of in a scratch line number-dependent manner. Scratch-induced upregulation was synergistically enhanced in the simultaneous presence of IL-13. In contrast, scratch injuries did not alter the expression of and , even in the presence of IL-13. Scratch-induced expression was dependent on ERK1/2 and p38 MAPK signals. The expression of IL-13Rα2 protein was indeed augmented in the scratch edge area and was also overexpressed in lichenified lesional AD skin. IL-13 inhibited the expression of involucrin, an important epidermal terminal differentiation molecule. IL-13-mediated downregulation of involucrin was attenuated in IL-13Rα2-overexpressed keratinocytes, confirming the decoy function of IL-13Rα2. Our findings indicate that scratching upregulates the expression of the IL-13 decoy receptor IL-13Rα2 and counteracts IL-13 signaling.

Learn More >

Search