I am a
Home I AM A Search Login

Accepted

Share this

Neurobiological mechanisms of TENS-induced analgesia.

Pain inhibition by additional somatosensory input is the rationale for the widespread use of Transcutaneous Electrical Nerve Stimulation (TENS) to relieve pain. Two main types of TENS produce analgesia in animal models: high-frequency (∼50-100 Hz) and low-intensity 'conventional' TENS, and low-frequency (∼2-4 Hz) and high-intensity 'acupuncture-like' TENS. However, TENS efficacy in human participants is debated, raising the question of whether the analgesic mechanisms identified in animal models are valid in humans. Here, we used a sham-controlled experimental design to clarify the efficacy and the neurobiological effects of 'conventional' and 'acupuncture-like' TENS in 80 human volunteers. To test the analgesic effect of TENS we recorded the perceptual and brain responses elicited by radiant heat laser pulses that activate selectively Aδ and C cutaneous nociceptors. To test whether TENS has a long-lasting effect on brain state we recorded spontaneous electrocortical oscillations. The analgesic effect of 'conventional' TENS was maximal when nociceptive stimuli were delivered homotopically, to the same hand that received the TENS. In contrast, 'acupuncture-like' TENS produced a spatially-diffuse analgesic effect, coupled with long-lasting changes both in the state of the primary sensorimotor cortex (S1/M1) and in the functional connectivity between S1/M1 and the medial prefrontal cortex, a core region in the descending pain inhibitory system. These results demonstrate that 'conventional' and 'acupuncture-like' TENS have different analgesic effects, which are mediated by different neurobiological mechanisms.

Learn More >

New daily persistent headache: a systematic review on an enigmatic disorder.

New daily persistent headache (NDPH) presents with a sudden onset headache which continues without remission within 24 h. Although rare, NDPH is important because it is one of the most treatment refractory primary headache disorders and can be highly disabling to the individuals. In this structured review, we describe the current knowledge of epidemiology, clinical features, trigger factors, pathophysiology, diagnosis and therapeutic options of NDPH to better understand this enigmatic disorder. The prevalence of NDPH estimated to be 0.03% to 0.1% in the general population and is higher in children and adolescents than in adults. Individuals with NDPH can pinpoint the exact date their headache started. The pain is constant and lacks special characteristics but in some has migraine features. The exact pathogenic mechanism of NDPH is unknown, however pro-inflammatory cytokines and cervicogenic problems might play a role in its development. The diagnosis of NDPH is mainly clinical and based on a typical history, but proper laboratory investigation is needed to exclude secondary causes of headache. Regarding treatment strategy, controlled drug trials are absent. It is probably best to treat NDPH based upon the predominant headache phenotype. For patients who do not respond to common prophylactic drugs, ketamine infusion, onabotulinum toxin type A, intravenous (IV) lidocaine, IV methylprednisolone and nerve blockade are possible treatment options, but even aggressive treatment is usually ineffective.

Learn More >

Real-world effectiveness of onabotulinumtoxinA treatment for the prevention of headaches in adults with chronic migraine in Australia: a retrospective study.

OnabotulinumtoxinA (BOTOX®, Allergan plc, Dublin, Ireland) is approved for the preventive treatment of headaches in adult patients with chronic migraine (CM) in Australia by the country's reimbursement mechanism for medicines, the Pharmaceutical Benefits Scheme (PBS). To our knowledge, this study represents the first focused report evaluating real-world evidence of onabotulinumtoxinA treatment via the PBS in Australian clinics.

Learn More >

The association between headache and low back pain: a systematic review.

To systematically review studies quantifying the association between primary chronic headaches and persistent low back pain (LBP).

Learn More >

Intra-articular Treatment of Osteoarthritis with Diclofenac-Conjugated Polymer Reduces Inflammation and Pain.

The most common treatment for osteoarthritis is daily oral administration of a nonsteroidal anti-inflammatory drug such as diclofenac. This daily dosage regime is often associated with severe side effects. In this study, we explored the potential of utilizing a high molecular weight cross-linked polyurethane polymer covalently linked to diclofenac () for intra-articular administration. We aim to exploit the advantages of local drug delivery by developing an implant with improved efficacy and reduced side effects. The polymer was synthesized from a diclofenac-functionalized monomer unit in a simple one-pot reaction, followed by cross-linking. drug release studies showed zero-order drug release for 4 days, followed by a gradual decline in drug release rate until diclofenac was depleted after 15 days. The cross-linked polymer was triturated to yield an injectable microgel formulation for administration. Whole animal fluorescence imaging of the rhodamine-labeled showed good retention of the polymer in the knee joints of healthy rats, with approximately 30% of the injected dose still present 2 weeks post intra-articular administration. In a reactivation arthritis animal model, the formulation reduced pain and significantly reduced inflammation after a short lag phase, showing that this drug delivery system warrants further development for long-term treatment of osteoarthritis with the benefit of reduced side effects.

Learn More >

Antimycin A-induced mitochondrial dysfunction activates vagal sensory neurons via ROS-dependent activation of TRPA1 and ROS-independent activation of TRPV1.

Inflammation causes activation of nociceptive sensory nerves, resulting in debilitating sensations and reflexes. Inflammation also induces mitochondrial dysfunction through multiple mechanisms. Sensory nerve terminals are densely packed with mitochondria, suggesting that mitochondrial signaling may play a role in inflammation-induced nociception. We have previously shown that agents that induce mitochondrial dysfunction, such as antimycin A, activate a subset of nociceptive vagal sensory nerves that express transient receptor potential (TRP) channels ankyrin 1 (A1) and vanilloid 1 (V1). However, the mechanisms underlying these responses are incompletely understood. Here, we studied the contribution of TRPA1, TRPV1 and reactive oxygen species (ROS) to antimycin A-induced vagal sensory nerve activation in dissociated neurons and at the sensory terminals of bronchopulmonary C-fibers. Nociceptive neurons were defined chemically and genetically. Antimycin A-evoked activation of vagal nociceptors in a Fura2 Ca assay correlated with TRPV1 responses compared to TRPA1 responses. Nociceptor activation was dependent on both TRP channels, with TRPV1 predominating in a majority of responding nociceptors and TRPA1 predominating only in nociceptors with the greatest responses. Surprisingly, both TRPA1 and TRPV1 were activated by HO when expressed in HEK293. Nevertheless, targeting ROS had no effect of antimycin A-evoked TRPV1 activation in either HEK293 or vagal neurons. In contrast, targeting ROS inhibited antimycin A-evoked TRPA1 activation in HEK293, vagal neurons and bronchopulmonary C-fibers, and a ROS-insensitive TRPA1 mutant was completely insensitive to antimycin A. We therefore conclude that mitochondrial dysfunction activates vagal nociceptors by ROS-dependent (TRPA1) and ROS-independent (TRPV1) mechanisms.

Learn More >

Activation of alpha7 acetylcholine receptors reduces neuropathic pain by decreasing dynorphin A release from microglia.

Dynorphin A is increased in neuropathic pain models. Activation of α7 n acetylcholine receptor (nAchR) reduces inflammation and pain. Whether activation of α7 nAchR affects dynorphin A release is unknown. The experiments evaluated the proinflammatory effect of dynorphin A in the spinal nerve ligation-induced neuropathic pain models and the effect of α7 nAchR activation on the dynorphin A content. α7 nAchR agonist, PHA-543613 and its antagonist, methyllycaconitine citrate were used and dynorphin A content was measured after spinal nerve ligation and in microglia cultures to test the analgesic mechanisms of α7 nAchR activation. The results showed that dynorphin A content peaked 3 to 7 days after nerve injury, and dynorphin A anti-serum intrathecal injection decreased IL-β and TNF-α content a week after nerve injury. Activation of α7 nAchR by PHA-543613 alleviated neuropathic pain behaviors and decreased dynorphin A concentration in the ipsilateral spinal cords. Also, PHA-543613 decreased dynorphin A release from the microglia cultures to LPS stimulation by activation of α7 nAchR. Our results suggest that dynorphin A contribute to the development and maintenance of neuropathic pain and that decreasing dynorphin A content by activation of α7 AchR of microglia is a potential therapeutic target for treating neuropathic pain.

Learn More >

Post-stroke pain caused by peripheral sensory hypersensitization after transient focal cerebral ischemia in rats.

The mechanisms underlying central post-stroke pain are not well understood and there is no satisfactory treatment. Here, in a rat model of stroke, we measured nociceptive threshold using current stimulation of primary afferent neurons in both hind paws. Male Wistar rats underwent middle cerebral artery occlusion (MCAO) for 50 min. Nociceptive thresholds for Aβ, Aδ and C fiber stimulation (at 2000, 250, and 5 Hz, respectively, using a Neurometer), and neurological deficits, were measured for 23 days after MCAO. Sensory thresholds in both hind paws were significantly lower in MCAO model rats than in control rats for 23 days after MCAO, with the greatest difference seen in Aδ fibers and the smallest in C fibers. Brain infarct area was measured histologically, and the correlation between neurological deficit and infarct size was examined. Neurological deficits were worse in animals with larger infarcts. Furthermore, correlations were observed between infarct size, neurological deficit, and sensory threshold of Aδ fibers 1 day after MCAO. These findings indicate that rats develop hyperalgesia after MCAO and that sensory abnormalities in Aδ fibers after cerebral ischemia may play an important role in post-stroke pain.

Learn More >

Effects of subthalamic deep brain stimulation with gabapentin and morphine on mechanical and thermal thresholds in 6-hydroxydopamine lesioned rats.

Chronic pain is the most common non-motor symptom among Parkinson's disease (PD) patients, with 1.85 million estimated to be in debilitating pain by 2030. Subthalamic deep brain stimulation (STN DBS) programmed for treating PD motor symptoms has also shown to significantly improve pain scores. However, even though most patient's pain symptoms improve or disappear, 74% of patients treated develop new pain symptoms within 8 years. Previously we have shown that duloxetine and STN high frequency stimulation (HFS) significantly increase mechanical thresholds more than either alone. The current project specifically investigates the effects of gabapentin and morphine alone and with high (150 Hz; HFS) and low (50 Hz; LFS) frequency stimulation in the 6-hydroxydopamine rat model for PD., We found that HFS, LFS, gabapentin 15 mg/kg and morphine 1mg/kg all independently improve Von Frey (VF) thresholds. Neither drug augments the HFS response significantly. Morphine at 1mg/kg showed a trend to increasing thresholds compared to LFS alone (p=0.062). Interestingly, gabapentin significantly reduced (p=0.019) the improved VF thresholds and Randall Selitto thresholds seen with LFS. Thus, though neither drug augments DBS, we found effects of both compounds independently increase VF thresholds, informing use of our model of chronic pain in PD. Gabapentin's reversal of LFS effects warrants further exploration.

Learn More >

Nicotine Attenuates Osteoarthritis Pain and Matrix Metalloproteinase-9 Expression via the α7 Nicotinic Acetylcholine Receptor.

Osteoarthritis (OA) is a degenerative joint disease that causes chronic disability among the elderly. Despite recent advances in symptomatic management of OA by pharmacological and surgical approaches, there remains a lack of optimal approaches to manage inflammation in the joints, which causes cartilage degradation and pain. In this study, we investigated the efficacy and underlying mechanisms of nicotine exposure in attenuating joint inflammation, cartilage degradation, and pain in a mouse model of OA. A mouse model of OA was induced by injection of monosodium iodoacetate into the knee joint. Cell culture models were also used to study the efficacy and underlying mechanisms of nicotine treatment in attenuating symptoms of OA. Nicotine treatment reduced mechanical allodynia, cartilage degradation, and the upregulation of matrix metalloproteinase-9 (MMP-9), a hallmark of joint inflammation in OA, in mice treated with monosodium iodoacetate. The effects of nicotine were abolished by the selective α7 nicotinic acetylcholine receptor (nAChR) blocker, methyllycaconitine. In RAW264.7 cells and murine primary bone marrow-derived macrophages, nicotine significantly inhibited MMP-9 production induced by LPS. In addition, nicotine significantly enhanced PI3K/Akt and inhibited NF-κB translocation from the cytosol to the nucleus in an α7-nAChR-dependent manner, suggesting that nicotine acts on α7-nAChRs to inhibit MMP-9 production by macrophages through modulation of the PI3K/Akt-NF-κB pathway. Our results provide novel evidence that nicotine can attenuate joint inflammation and pain in experimental OA via α7-nAChRs. α7-nAChR could thus serve as a highly promising target to manage joint inflammation and pain in OA.

Learn More >

Search