I am a
Home I AM A Search Login

Accepted

Share this

Living on the edge: Pain control by blood leukocytes at the borders of the central nervous system.

Discussion on the impact of blood leukocytes accumulating at the borders of the central nervous system on the development of neuropathic pain.

Learn More >

Molecular mechanisms of action of systemic lidocaine in acute and chronic pain: a narrative review.

Systemic administration of the local anaesthetic lidocaine is antinociceptive in both acute and chronic pain states, especially in acute postoperative and chronic neuropathic pain. These effects cannot be explained by its voltage-gated sodium channel blocking properties alone, but the responsible mechanisms are still elusive. This narrative review focuses on available experimental evidence of the molecular mechanisms by which systemic lidocaine exerts its clinically documented analgesic effects. These include effects on the peripheral nervous system and CNS, where lidocaine acts via silencing ectopic discharges, suppression of inflammatory processes, and modulation of inhibitory and excitatory neurotransmission. We highlight promising objectives for future research to further unravel these antinociceptive mechanisms, which subsequently may facilitate the development of new analgesic strategies and therapies for acute and chronic pain.

Learn More >

Erenumab: A First-in-Class Monoclonal Antibody for Migraine Prevention.

To review the pharmacology, efficacy, and safety of the calcitonin gene-related peptide (CGRP) inhibitor erenumab for migraine preventive therapy.

Learn More >

Genetic Analysis of a Large Family with Migraine, Vertigo, and Motion Sickness.

Migraine is a common disorder most typically presenting as headache and often associated with vertigo and motion sickness. It is a genetically complex condition with multiple genes ultimately contributing to the predisposition and development of this episodic neurological disorder. We identified a large American family of 29 individuals of which 17 members suffered from at least one of these disorders, migraine, vertigo, or motion sickness. Many of these individuals suffered from several simultaneously. We hypothesized that vertigo and motion sickness may involve genes that are independent to those directly contributing to migraine susceptibility.

Learn More >

Are there sex differences in visceral sensitivity in young healthy men and women?

Visceral hypersensitivity plays a key role in the pathophysiology of chronic visceral pain like irritable bowel syndrome (IBS), which is significantly more prevalent in women. Possible sex differences in visceral sensitivity remain poorly studied. We assessed sex differences in visceral sensitivity and their association with subclinical symptoms, trait anxiety, and chronic stress in a large sample of healthy men and women.

Learn More >

Transcutaneous Electrical Nerve Stimulation Reduces Knee Osteoarthritic Pain by Inhibiting Spinal Glial Cells in Rats.

Transcutaneous electrical nerve stimulation (TENS) is commonly used for pain control. However, the effects of TENS on osteoarthritis (OA) pain and potential underlying mechanisms remain unclear.

Learn More >

Spinal IL-33/ST2 signaling mediates chronic itch in mice through the astrocytic JAK2-STAT3 cascade.

Interleukin-33 (IL-33) and its receptor ST2 contribute to spinal glial activation and chronic pain. A recent study showed that peripheral IL-33 plays a pivotal role in the pathogenesis of chronic itch induced by poison ivy. However, how IL-33/ST2 signaling in the spinal cord potentially mediates chronic itch remains elusive. Here, we determined that St2 substantially reduced scratching behaviors in 2,4-dinitrofluorobenzene (DNFB)-induced allergic contact dermatitis (ACD) as well as acetone and diethylether followed by water-induced dry skin in mice. Intrathecal administration of the neutralizing anti-ST2 or anti-IL-33 antibody remarkably decreased the scratching response in DNFB-induced ACD mice. Expression of spinal IL-33 and ST2 significantly increased in ACD mice, as evidenced by increased mRNA and protein levels. Immunofluorescence and in situ hybridization demonstrated that increased expression of spinal IL-33 was predominant in oligodendrocytes and astrocytes, whereas ST2 was mainly expressed in astrocytes. Further studies showed that in ACD mice, the activation of astrocytes and increased phosphorylation of signal transducer and activator of transcription 3 (STAT3) were markedly attenuated by St2 . Intrathecal injection of Janus Kinase 2 Inhibitor AG490 significantly alleviated scratching behaviors in ACD mice. rIL-33 pretreatment exacerbated gastrin-releasing peptide (GRP)-evoked scratching behaviors. This increased gastrin-releasing peptide receptor (GRPR) expression was abolished by St2 . Tnf-α upregulation was suppressed by St2 . Our results indicate that the spinal IL-33/ST2 signaling pathway contributes to chronic itch via astrocytic JAK2-STAT3 cascade activation, promoting TNF-α release to regulate the GRP/GRPR signaling-related itch response. Thus, these findings provide a potential therapeutic option for treating chronic pruritus.

Learn More >

Modulation of Brain Networks by Sumatriptan-Naproxen in the Inflammatory-Soup Migraine Model.

Migraine is a debilitating condition, however, the pharmacological effects on central nervous system networks following successful therapy is poorly understood. Defining this neurocircuitry is critical to our understanding of the disorder and for the development of anti-migraine drugs. Using an established inflammatory soup (IS) model of migraine-like pathophysiology (N=12) compared to sham synthetic interstitial fluid (SIF) migraine induction (N=12), our aim was to evaluate changes in network-level functional connectivity following sumatriptan-naproxen infusion in awake, conscious, rodents (Sprague-Dawley rats). Sumatriptan-naproxen infusion fMRI data was analyzed using an independent competent analysis approach. Whole brain analysis yielded significant between-group (IS vs. SIF) alterations in functional connectivity across the cerebellar, default mode, basal ganglia, autonomic, and salience networks. These results demonstrate the large-scale anti-migraine effects of sumatriptan-naproxen co-administration following dural sensitization.

Learn More >

High-threshold primary afferent supply of spinal lamina X neurons.

The spinal gray matter region around the central canal, lamina X, is critically involved in somatosensory processing and visceral nociception. Although several classes of primary afferent fibers terminate or decussate in this area, little is known about organization and functional significance of the afferent supply of lamina X neurons. Using the hemisected ex vivo spinal cord preparation, we show that virtually all lamina X neurons receive primary afferent inputs, which are predominantly mediated by the high-threshold Aδ- fibers and C-fibers. In two-thirds of the neurons tested, the inputs were monosynaptic, implying a direct targeting of the population of lamina X neurons by the primary nociceptors. Beside the excitatory inputs, 48% of the neurons also received polysynaptic inhibitory inputs. A complex pattern of interactions between the excitatory and inhibitory components determined the output properties of the neurons, one-third of which fired spikes in response to the nociceptive dorsal root stimulation. In this respect, the spinal gray matter region around the central canal is similar to the superficial dorsal horn, the major spinal nociceptive processing area. We conclude that lamina X neurons integrate direct and indirect inputs from several types of thin primary afferent fibers and play an important role in nociception.

Learn More >

Gender Differences in Pain Risk in Old Age: Magnitude and Contributors.

To identify the factors associated with the excess risk of pain observed among older women compared with men.

Learn More >

Search