I am a
Home I AM A Search Login

Accepted

Share this

Mind-body treatments of irritable bowel syndrome symptoms: An updated meta-analysis.

Irritable bowel syndrome (IBS) is a widespread chronic functional gastrointestinal (GI) disorder having bidirectional comorbidity with psychiatric disorders. This review focuses on psychological treatment of IBS, focusing on symptom severity rather than IBS diagnostic criteria. We chose this dimensional approach in order to assess mind-body effects as an alternative or complement to conventional medical treatment, which focuses on symptom relief. We calculated the effect sizes for various psychosocial-mind-body therapies (MBTs) for IBS symptoms in both children and adults. Therapies included meditation, relaxation, yoga, autogenic training, progressive relaxation, general training in stress coping, hypnotherapy, biofeedback, psycho-education, psychodynamic psychotherapy, and cognitive behavioral therapy. We performed a meta-regression analyses and mixed effects contrasts to find various outcome differences, and we analyzed their relative efficacy in both children and adults. We found 53 studies in 50 reports describing randomized controlled trials. Medium to high effect sizes were found across all methods compared with various controls, with possibly higher effects for children. We found no systematic differences among treatment methods. Meta-regression analyses showed no significant effect for the presence of psychophysiological training, meditation or explicit exposure procedures as treatment components, although most MBTs include exposure as a nonexplicit treatment characteristic, and many relaxation techniques have meditative characteristics. We conclude that there is considerable evidence that an array of mind-body and other psychological therapies can be effective complements to medical treatment for IBS symptom severity, with little evidence for relative superiority of any particular approach. We suggest that the various methods may operate through different mechanisms.

Learn More >

Barriers and enablers to monitoring and deprescribing opioid analgesics for chronic non-cancer pain: protocol for a qualitative evidence synthesis using the Theoretical Domains Framework.

The over-prescription and overuse of opioid analgesics for chronic non-cancer pain (CNCP) is a growing issue. Synthesis of evidence about the barriers and enablers to reducing long-term opioid prescribing and use will enable the development of tailored interventions to address both problems.

Learn More >

Spinal gastrin releasing peptide receptor expressing interneurons are controlled by local phasic and tonic inhibition.

Dorsal horn gastrin-releasing peptide receptor (GRPR) neurons have a central role in itch transmission. Itch signaling has been suggested to be controlled by an inhibitory network in the spinal dorsal horn, as increased scratching behavior can be induced by pharmacological disinhibition or ablation of inhibitory interneurons, but the direct influence of the inhibitory tone on the GRPR neurons in the itch pathway have not been explored. Here we have investigated spinal GRPR neurons through in vitro and bioinformatical analysis. Electrophysiological recordings revealed that GRPR neurons receive local spontaneous excitatory inputs transmitted by glutamate and inhibitory inputs by glycine and GABA, which were transmitted either by separate glycinergic and GABAergic synapses or by glycine and GABA co-releasing synapses. Additionally, all GRPR neurons received both glycine- and GABA-induced tonic currents. The findings show a complex inhibitory network, composed of synaptic and tonic currents that gates the excitability of GRPR neurons, which provides direct evidence for the existence of an inhibitory tone controlling spontaneous discharge in an itch-related neuronal network in the spinal cord. Finally, calcium imaging revealed increased levels of neuronal activity in Grpr-Cre neurons upon application of somatostatin, which provides direct in vitro evidence for disinhibition of these dorsal horn interneurons.

Learn More >

Peripheral straightjacket (α2δ Ca2+ channel subunit) expression is required for neuropathic sensitization in Drosophila.

Nerve injury leads to devastating and often untreatable neuropathic pain. While acute noxious sensation (nociception) is a crucial survival mechanism and is conserved across phyla, chronic neuropathic pain is considered a maladaptive response owing to its devastating impact on a patient's quality of life. We have recently shown that a neuropathic pain-like response occurs in adult . However, the mechanisms underlying this phenomenon are largely unknown. Previous studies have shown that the α2δ peripheral calcium channel subunit () is a conserved factor required for thermal pain perception. We demonstrate here that is required in peripheral sensory neurons for acute thermal responses and that it mediates nociceptive hypersensitivity in an adult model of neuropathic pain-like disease. Given that calcium channels are the main targets of gabapentinoids (pregabalin and gabapentin), we assessed if these drugs can alleviate nociceptive hypersensitivity. Our findings suggest that gabapentinoids may prevent nociceptive hypersensitivity by preserving central inhibition after nerve injury. Together, our data further highlight the similarity of some mechanisms for pain-like conditions across and validates the scientific use of neuropathic sensitization models for analgesic drug discovery. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.

Learn More >

Adaptive mechanisms driving maladaptive pain: how chronic ongoing activity in primary nociceptors can enhance evolutionary fitness after severe injury.

Chronic pain is considered maladaptive by clinicians because it provides no apparent protective or recuperative benefits. Similarly, evolutionary speculations have assumed that chronic pain represents maladaptive or evolutionarily neutral dysregulation of acute pain mechanisms. By contrast, the present hypothesis proposes that chronic pain can be driven by mechanisms that evolved to reduce increased vulnerability to attack from predators and aggressive conspecifics, which often target prey showing physical impairment after severe injury. Ongoing pain and anxiety persisting long after severe injury continue to enhance vigilance and behavioural caution, decreasing the heightened vulnerability to attack that results from motor impairment and disfigurement, thereby increasing survival and reproduction (fitness). This hypothesis is supported by evidence of animals surviving and reproducing after traumatic amputations, and by complex specializations that enable primary nociceptors to detect local and systemic signs of injury and inflammation, and to maintain low-frequency discharge that can promote ongoing pain indefinitely. Ongoing activity in nociceptors involves intricate electrophysiological and anatomical specializations, including inducible alterations in the expression of ion channels and receptors that produce persistent hyperexcitability and hypersensitivity to chemical signals of injury. Clinically maladaptive chronic pain may sometimes result from the recruitment of this powerful evolutionary adaptation to severe bodily injury. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.

Learn More >

An evolutionary medicine perspective on pain and its disorders.

Enormous progress in understanding the mechanisms that mediate pain can be augmented by an evolutionary medicine perspective on how the capacity for pain gives selective advantages, the trade-offs that shaped the mechanisms, and evolutionary explanations for the system's vulnerability to excessive and chronic pain. Syndromes of deficient pain document tragically the utility of pain to motivate escape from and avoidance of situations causing tissue damage. Much apparently excessive pain is actually normal because the cost of more pain is often vastly less than the cost of too little pain (the smoke detector principle). Vulnerability to pathological pain may be explained in part because natural selection has shaped mechanisms that respond adaptively to repeated tissue damage by decreasing the pain threshold and increasing pain salience. The other half of an evolutionary approach describes the phylogeny of pain mechanisms; the apparent independence of different kinds of pain is of special interest. Painful mental states such as anxiety, guilt and low mood may have evolved from physical pain precursors. Preliminary evidence for this is found in anatomic and genetic data. Such insights from evolutionary medicine may help in understanding vulnerability to chronic pain. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.

Learn More >

Drosophila menthol sensitivity and the Precambrian origins of transient receptor potential-dependent chemosensation.

Transient receptor potential (TRP) cation channels are highly conserved, polymodal sensors which respond to a wide variety of stimuli. Perhaps most notably, TRP channels serve critical functions in nociception and pain. A growing body of evidence suggests that transient receptor potential melastatin (TRPM) and transient receptor potential ankyrin (TRPA) thermal and electrophile sensitivities predate the protostome-deuterostome split (greater than 550 Ma). However, TRPM and TRPA channels are also thought to detect modified terpenes (e.g. menthol). Although terpenoids like menthol are thought to be aversive and/or harmful to insects, mechanistic sensitivity studies have been largely restricted to chordates. Furthermore, it is unknown if TRP-menthol sensing is as ancient as thermal and/or electrophile sensitivity. Combining genetic, optical, electrophysiological, behavioural and phylogenetic approaches, we tested the hypothesis that insect TRP channels play a conserved role in menthol sensing. We found that topical application of menthol to larvae elicits a – and -dependent nocifensive rolling behaviour, which requires activation of Class IV nociceptor neurons. Further, in characterizing the evolution of TRP channels, we put forth the hypotheses that three previously undescribed TRPM channel clades (basal, αTRPM and βTRPM), as well as TRPs with residues critical for menthol sensing, were present in ancestral bilaterians. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.

Learn More >

Discrimination between nociceptive reflexes and more complex responses consistent with pain in crustaceans.

Animals have quick-acting nociceptive reflexes that protect them from tissue damage. Some taxa have also evolved the capacity for pain. Pain appears to be linked to long-term changes in motivation brought about by the aversive nature of the experience. Pain presumably enhances long-term protection through behaviour modification based, in part, on memory. However, crustaceans have long been viewed as responding purely by reflex and thus not experiencing pain. This paper considers behavioural and physiological criteria that distinguish nociception from potential pain in this taxon. These include trade-offs with other motivational systems and prolonged motivational change. Complex, prolonged grooming or rubbing demonstrate the perception of the specific site of stimulus application. Recent evidence of fitness-enhancing, anxiety-like states is also consistent with the idea of pain. Physiological changes in response to noxious stimuli mediate some of the behavioural change. Rapid avoidance learning and prolonged memory indicate central processing rather than mere reflexes. Thus, available data go beyond the idea of just nociception. However, the impossibility of total proof of pain described in ways appropriate for our own species means that pain in crustaceans is still disputed. Pain in animals should be defined in ways that do not depend on human pain experience. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.

Learn More >

Comparative studies of endocannabinoid modulation of pain.

Cannabinoid-based therapies have long been used to treat pain, but there remain questions about their actual mechanisms and efficacy. From an evolutionary perspective, the cannabinoid system would appear to be highly conserved given that the most prevalent endogenous cannabinoid (endocannabinoid) transmitters, 2-arachidonyl glycerol and anandamide, have been found throughout the animal kingdom, at least in the species that have been analysed to date. This review will first examine recent findings regarding the potential conservation across invertebrates and chordates of the enzymes responsible for endocannabinoid synthesis and degradation and the receptors that these transmitters act on. Next, comparisons of how endocannabinoids modulate nociception will be examined for commonalities between vertebrates and invertebrates, with a focus on the medicinal leech . Evidence is presented that there are distinct, evolutionarily conserved anti-nociceptive and pro-nociceptive effects. The combined studies across various animal phyla demonstrate the utility of using comparative approaches to understand conserved mechanisms for modulating nociception. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.

Learn More >

Early-life injury produces lifelong neural hyperexcitability, cognitive deficit and altered defensive behaviour in the squid Euprymna scolopes.

Injury occurring in the neonatal period in mammals is known to induce plasticity in pain pathways that may lead to pain dysfunction in later life. Whether these effects are unique to the mammalian nervous system is not well understood. Here, we investigate whether similar effects of early-life injury are found in a large-brained comparative model, the cephalopod . We show that the peripheral nervous system of undergoes profound and permanent plasticity after injury of peripheral tissue in the early post-hatching period, but not after the same injury given in the later juvenile period. Additionally, both innate defensive behaviour and learning are impaired by injury in early life. We suggest that these similar patterns of nervous system and behavioural remodelling that occur in squid and in mammals indicate an adaptive value for long-lasting plasticity arising from early-life injury, and suggest that injuries inflicted in very early life may signal to the nervous system that the environment is highly dangerous. Thus, neonatal pain plasticity may be a conserved pattern whose purpose is to set the developing nervous system's baseline responsiveness to threat. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.

Learn More >

Search