I am a
Home I AM A Search Login

Accepted

Share this

Allosteric Modulation of Cannabinoid Receptor 1-Current Challenges and Future Opportunities.

The cannabinoid receptor type 1 (CB1R), a G protein-coupled receptor (GPCR), plays an essential role in the control of many physiological processes such as hunger, memory loss, gastrointestinal activity, catalepsy, fear, depression, and chronic pain. Therefore, it is an attractive target for drug discovery to manage pain, neurodegenerative disorders, obesity, and substance abuse. However, the psychoactive adverse effects, generated by CB1R activation in the brain, limit the use of the orthosteric CB1R ligands as drugs. The discovery of CB1R allosteric modulators during the last decade provided new tools to target the CB1R. Moreover, application of the site-directed mutagenesis in combination with advanced physical methods, especially X-ray crystallography and computational modeling, has opened new horizons for understanding the complexity of the structure, function, and activity of cannabinoid receptors. In this paper, we present the latest advances in research on the CB1R, its allosteric modulation and allosteric ligands, and their translational potential. We focused on structural essentials of the cannabinoid 1 receptor- ligand (drug) interactions, as well as modes of CB1R signaling regulation.

Learn More >

Rehabilitation Succeeds Where Technology and Pharmacology Failed: Effective Treatment of Persistent Pain across the Lifespan.

Chronic pain affects up to 30% of the adult population Chronic pain affects up to 30% of the adult population […].

Learn More >

The Role of Age, Education, and Digital Health Literacy in the Usability of Internet-Based Cognitive Behavioral Therapy for Chronic Pain: Mixed Methods Study.

Internet-based cognitive behavior therapy (iCBT) can be effective in mental and somatic health care. Research on the feasibility of internet interventions in clinical practice is, however, still scarce. Studies with a focus on the patient regarding usability of interventions and digital health literacy skills are especially lacking.

Learn More >

Pharmacological interventions for the prevention of acute postoperative pain in adults following brain surgery.

Pain following brain surgery can compromise recovery. Several pharmacological interventions have been used to prevent pain after craniotomy; however, there is currently a lack of evidence regarding which interventions are most effective.

Learn More >

Selective activation of TWIK-related acid-sensitive K 3 subunit-containing channels is analgesic in rodent models.

The paucity of selective agonists for TWIK-related acid-sensitive K 3 (TASK-3) channel, a member of two-pore domain K (K2P) channels, has contributed to our limited understanding of its biological functions. By targeting a druggable transmembrane cavity using a structure-based drug design approach, we discovered a biguanide compound, CHET3, as a highly selective allosteric activator for TASK-3-containing K2P channels, including TASK-3 homomers and TASK-3/TASK-1 heteromers. CHET3 displayed potent analgesic effects in vivo in a variety of acute and chronic pain models in rodents that could be abolished pharmacologically or by genetic ablation of TASK-3. We further found that TASK-3-containing channels anatomically define a unique population of small-sized, transient receptor potential cation channel subfamily M member 8 (TRPM8)-, transient receptor potential cation channel subfamily V member 1 (TRPV1)-, or tyrosine hydroxylase (TH)-positive nociceptive sensory neurons and functionally regulate their membrane excitability, supporting CHET3 analgesic effects in thermal hyperalgesia and mechanical allodynia under chronic pain. Overall, our proof-of-concept study reveals TASK-3-containing K2P channels as a druggable target for treating pain.

Learn More >

Remapping in cerebral and cerebellar cortices is not restricted by somatotopy.

A fundamental organizing principle in the somatosensory and motor systems is somatotopy, where specific body parts are represented separately and adjacently to other body parts, resulting in a body map. Different terminals of the sensorimotor network show varied somatotopic layouts, in which the relative position, distance and overlap between body-part representations differ. Since somatotopy is best characterized in the primary somatosensory (S1) and motor (M1) cortices, these terminals have been the main focus of research on somatotopic remapping following loss of sensory input (e.g. arm amputation). Cortical remapping is generally considered to be driven by the layout of the underlying somatotopy, such that neighboring body-part representations tend to activate the deprived brain region. Here, we challenge the assumption that somatotopic layout restricts remapping, by comparing patterns of remapping in humans born without one hand (hereafter, one-handers, n=26) across multiple terminals of the sensorimotor pathway. We first report that in the cerebellum of one-handers, the deprived hand region represents multiple body parts. Importantly, the representations of some of these body parts do not neighbor the deprived hand region. We further replicate our previous finding, showing a similar pattern of remapping in the deprived hand region of the cerebral cortex in one-handers. Finally, we report preliminary results of a similar remapping pattern in the putamen of one-handers. Since these three sensorimotor terminals (cerebellum, cerebrum, putamen) contain different somatotopic layouts, the parallel remapping they undergo demonstrates that the mere spatial layout of body-part representations may not exclusively dictate remapping in the sensorimotor systems.When a hand is missing, the brain region that typically processes information from that hand may instead process information from other body-parts, a phenomenon termed remapping. It is commonly thought that only body-parts whose information is processed in regions neighboring the hand region could "take up" the resources of this now deprived region. Here we demonstrate that information from multiple body-parts is processed in the hand regions of both the cerebral cortex and cerebellum. The native brain regions of these body-parts have varying levels of overlap with the hand region across multiple terminals in the sensorimotor hierarchy, and do not necessarily neighbor the hand region. We therefore propose that proximity between brain regions does not limit brain remapping.

Learn More >

Neurotensin Analogues Containing Cyclic Surrogates of Tyrosine at Position 11 Improve NTS2 Selectivity Leading to Analgesia without Hypotension and Hypothermia.

Neurotensin (NT) exerts its analgesic effects through activation of the G protein-coupled receptors NTS1 and NTS2. This opioid-independent antinociception represents a potential alternative for pain management. While activation of NTS1 also induces a drop in blood pressure and body temperature, NTS2 appears to be an analgesic target free of these adverse effects. Here, we report modifications of NT at Tyr11 to increase selectivity towards NTS2, complemented by modifications at the N-terminus to impair proteolytic degradation of the biologically active NT(8-13) sequence. Replacement of Tyr11 by either 6-OH-Tic or 7-OH-Tic resulted in a significant loss of binding affinity to NTS1 and subsequent NTS2 selectivity. Incorporation of the unnatural amino acid β3hLys at position 8 increased the half-life to over 24 h in plasma. Simultaneous integration of both β3hLys8 and 6-OH-Tic11 into NT(8-13) produced a potent and NTS2-selective analogue with strong analgesic action after intrathecal delivery in the rat formalin-induced pain model with an ED50 of 1.4 nmol. Additionally, intravenous administration of this NT analogue did not produce persistent hypotension or hypothermia. These results demonstrate that NT analogues harbouring unnatural amino acids at positions 8 and 11 can enhance crucial pharmacokinetic and pharmacodynamic features for NT(8-13) analogues, i.e., proteolytic stability, NTS2 selectivity and an improved analgesic/adverse effect ratio.

Learn More >

Identification of Spinal Neurons Contributing to the Dorsal Column Projection Mediating Fine Touch and Corrective Motor Movements.

Tactile stimuli are integrated and processed by neuronal circuits in the deep dorsal horn of the spinal cord. Several spinal interneuron populations have been implicated in tactile information processing. However, dorsal horn projection neurons that contribute to the postsynaptic dorsal column (PSDC) pathway transmitting tactile information to the brain are poorly characterized. Here, we show that spinal neurons marked by the expression of Zic2cre mediate light touch sensitivity and textural discrimination. A subset of Zic2cre neurons are PSDC neurons that project to brainstem dorsal column nuclei, and chemogenetic activation of Zic2 PSDC neurons increases sensitivity to light touch stimuli. Zic2 neurons receive direct input from the cortex and brainstem motor nuclei and are required for corrective motor movements. These results suggest that Zic2 neurons integrate sensory input from cutaneous afferents with descending signals from the brain to promote corrective movements and transmit processed touch information back to the brain.

Learn More >

Loss of pseudouridine synthases in the RluA family causes hypersensitive nociception in Drosophila.

Learn More >

NADPH oxidase 2 derived ROS contributes to LTP of C-fiber evoked field potentials in spinal dorsal horn and persistent mirror-image pain following high frequency stimulus of the sciatic nerve.

High frequency stimulation (HFS) of the sciatic nerve has been reported to produce long term potentiation (LTP) and long-lasting pain hypersensitivity in rats. However, the central underlying mechanism remains unclear. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) belongs to a group of electron-transporting transmembrane enzymes that produce reactive oxygen species (ROS). Here we found that NOX2 was upregulated in the lumbar spinal dorsal horn after HFS of the left sciatic nerve, which induced bilateral pain and spinal LTP in both male and female rats. Blocking NOX2 with blocking peptide or shRNA prevented the development of bilateral mechanical allodynia, the induction of spinal LTP, and the phosphorylation of N-methyl-d-aspartate (NMDA) receptor 2B (GluN2B) and nuclear factor kappaB (NF-κB) p65 following HFS. Moreover, NOX2 shRNA reduced the frequency and amplitude of both spontaneous excitatory post synaptic currents (sEPSCs) and miniature excitatory postsynaptic currents (mEPSCs) in laminar II neurons. Furthermore, 8-hydroxyguanine (8-OHG), an oxidative stress marker, was increased in the spinal dorsal horn. Spinal application of ROS scavenger, Phenyl-N-tert-butylnitrone (PBN), depressed the already established spinal LTP. Spinal application of H2O2, one ROS, induced LTP and bilateral mechanical allodynia, increased the frequency and amplitude of sEPSCs in laminar II neurons, and phosphorylated GluN2B and p65 in the dorsal horn. The present study provided electrophysiological and behavioral evidence that NOX2- derived ROS in the spinal cord contributed to persistent mirror-image pain by enhancing the synaptic transmission, which was mediated by increasing presynaptic glutamate release and activation of NMDAR and NF-κB in the spinal dorsal horn.

Learn More >

Search