I am a
Home I AM A Search Login

Accepted

Share this

Predictors of Psychological Outcomes and the Effectiveness and Experience of Psychological Interventions for Adult Women with Chronic Pelvic Pain: A Scoping Review.

CPP affects approximately 15% of women worldwide and has significant psychological, physical and financial impact on the lives of sufferers. Psychological interventions are often recommended as adjuncts to medical treatment for women with chronic pelvic pain (CPP). This is as women with CPP experience higher rates of mental health concerns and difficulties coping with their pain.. However, recent systematic reviews have highlighted that the efficacy of psychological interventions is not conclusive in this population. This review aimed to identify predictors of mental health outcomes and effective psychological techniques and interventions in women with CPP to inform the development of future psychological therapies.

Learn More >

Differential Expression of Acid – Sensing Ion Channels in Mouse Primary Afferents in Naïve and Injured Conditions.

Injury and inflammation cause tissue acidosis, which is a common feature of various painful conditions. Acid-Sensing Ion channels (ASICs) are amongst the main excitatory channels activated by extracellular protons and expressed in the nervous system. Six transcripts of ASIC subunits including ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3, and ASIC4 are encoded by four genes (Asic1-4) and have been identified in rodents. Most ASIC subunits are present at substantial levels in primary sensory neurons of dorsal root ganglia (DRG) except for ASIC4. However, their expression pattern in DRG neurons remains largely unclear, mainly due to the lack of antibodies with appropriate specificity. In this study, we examined in detail the expression pattern of ASIC1-3 subunits, including splice variants, in different populations of DRG neurons in adult mice using an hybridization technique (RNAscope) with high sensitivity and specificity. We found that in naïve condition, all five subunits examined were expressed in the majority of myelinated, NF200-immunoreactive, DRG neurons (NF200). However, ASIC subunits showed a very different expression pattern among non-myelinated DRG neuronal subpopulations: ASIC1 and ASIC3 were only expressed in CGRP-immunoreactive neurons (CGRP), ASIC2a was mostly expressed in the majority of IB4-binding neurons (IB4), while ASIC2b was expressed in almost all non-myelinated DRG neurons. We also found that at least half of sensory neurons expressed multiple types of ASIC subunits, indicating prevalence of heteromeric channels. In mice with peripheral nerve injury, the expression level of ASIC1a and ASIC1b in L4 DRG and ASIC3 in L5 DRG were altered in CGRP neurons, but not in IB4 neurons. Furthermore, the pattern of change varied among DRGs depending on their segmental level, which pointed to differential regulatory mechanisms between afferent types and anatomical location. The distinct expression pattern of ASIC transcripts in naïve condition, and the differential regulation of ASIC subunits after peripheral nerve injury, suggest that ASIC subunits are involved in separate sensory modalities.

Learn More >

Mechanisms of Dexmedetomidine in Neuropathic Pain.

Dexmedetomidin is a new-generation, highly selective α2 adrenergic receptor agonist with a large number of advantages, including its sedative and analgesic properties, its ability to inhibit sympathetic nerves, its reduced anesthetic dosage, its hemodynamic stability, its mild respiratory depression abilities, and its ability to improve postoperative recognition. Its safety and effectiveness, as well as its ability to provide a certain degree of comfort to patients, make it a useful anesthetic adjuvant for a wide range of clinical applications. For example, dexmedetomidine is commonly used in patients undergoing general anesthesia, and it also exerts sedative effects during tracheal intubation or mechanical ventilation in intensive care unit patients. In recent years, with the deepening of clinical research on dexmedetomidine, the drug is still applied in the treatment of spastic pain, myofascial pain, neuropathic pain, complex pain syndrome, and chronic headache, as well as for multimodal analgesia. However, we must note that the appropriateness of patient and dose selection should be given attention when using this drug; furthermore, patients should be observed for adverse reactions such as hypotension and bradycardia. Therefore, the safety and effectiveness of this drug for long-term use remain to be studied. In addition, basic experimental studies have also found that dexmedetomidine can protect important organs, such as the brain, heart, kidney, liver, and lung, through various mechanisms, such as antisympathetic effects, the inhibition of apoptosis and oxidative stress, and a reduction in the inflammatory response. Moreover, the neuroprotective properties of dexmedetomidine have received the most attention from scholars. Hence, in this review, we mainly focus on the characteristics and clinical applications of dexmedetomidine, especially the role of dexmedetomidine in the nervous system and the use of dexmedetomidine in the relief of neuropathic pain.

Learn More >

Patient reported postoperative pain with a smartphone application: A proof of concept.

Thirty patients (60%) found it satisfying or very satisfying to communicate their pain with the app. Pain experienced after surgery was scored by patients as 'no': 3 (6%), 'little': 5 (10%), 'bearable': 25 (50%), 'considerable': 13 (26%) and 'severe': 1 (2%). Forty-five patients (90%) were positive about the ease of recording. Forty-five patients (90%) could correctly record their pain with the app. Thirty-eight patients (76%) agreed that in-app notifications to record pain were useful. Two patients (4%) were too ill to use the application. Based on usability feedback, we will redesign the pain intensity wheel and the in-app pain chart to improve clarity for patients to understand the course of their pain.

Learn More >

What We Gain From Machine Learning Studies in Headache Patients.

Learn More >

C-X-C Motif Chemokine 10 Contributes to the Development of Neuropathic Pain by Increasing the Permeability of the Blood-Spinal Cord Barrier.

Neuropathic pain is among the most debilitating forms of chronic pain. Studies have suggested that chronic pain pathogenesis involves neuroimmune interactions and blood-spinal cord barrier (BSCB) disruption. However, the underlying mechanisms are poorly understood. We modeled neuropathic pain in rats by inducing chronic constriction injury (CCI) of the sciatic nerve and analyzed the effects on C-X-C motif chemokine 10 (CXCL10)/CXCR3 activation, BSCB permeability, and immune cell migration from the circulation into the spinal cord. We detected CXCR3 expression in spinal neurons and observed that CCI induced CXCL10/CXCR3 activation, BSCB disruption, and mechanical hyperalgesia. CCI-induced BSCB disruption enabled circulating T cells to migrate into the spinal parenchyma. Intrathecal administration of an anti-CXCL10 antibody not only attenuated CCI-induced hyperalgesia, but also reduced BSCB permeability, suggesting that CXCL10 acts as a key regulator of BSCB integrity. Moreover, T cell migration may play a critical role in the neuroimmune interactions involved in the pathogenesis of CCI-induced neuropathic pain. Our results highlight CXCL10 as a new potential drug target for the treatment of nerve injury-induced neuropathic pain.

Learn More >

Predictors of Depression, Anxiety and Stress Indicators in a Cohort of Women with Chronic Pelvic Pain.

Establishing predictors of mental health outcomes is a crucial precursor to the development and assessment of psychological interventions for women with chronic pelvic pain (CPP). The objective of this study was to identify predictors of depression, anxiety and stress in a cohort of women with CPP.

Learn More >

Cytotoxic Immunity in Peripheral Nerve Injury and Pain.

Cytotoxicity and consequent cell death pathways are a critical component of the immune response to infection, disease or injury. While numerous examples of inflammation causing neuronal sensitization and pain have been described, there is a growing appreciation of the role of cytotoxic immunity in response to painful nerve injury. In this review we highlight the functions of cytotoxic immune effector cells, focusing in particular on natural killer (NK) cells, and describe the consequent action of these cells in the injured nerve as well as other chronic pain conditions and peripheral neuropathies. We describe how targeted delivery of cytotoxic factors via the immune synapse operates alongside Wallerian degeneration to allow local axon degeneration in the absence of cell death and is well-placed to support the restoration of homeostasis within the nerve. We also summarize the evidence for the expression of endogenous ligands and receptors on injured nerve targets and infiltrating immune cells that facilitate direct neuro-immune interactions, as well as modulation of the surrounding immune milieu. A number of chronic pain and peripheral neuropathies appear comorbid with a loss of function of cellular cytotoxicity suggesting such mechanisms may actually help to resolve neuropathic pain. Thus while the immune response to peripheral nerve injury is a major driver of maladaptive pain, it is simultaneously capable of directing resolution of injury in part through the pathways of cellular cytotoxicity. Our growing knowledge in tuning immune function away from inflammation toward recovery from nerve injury therefore holds promise for interventions aimed at preventing the transition from acute to chronic pain.

Learn More >

Therapeutic Potential of Lebrikizumab in the Treatment of Atopic Dermatitis.

Atopic dermatitis (AD) is a chronic, relapsing skin condition with a wide disease spectrum. Moderate-to-severe cases often need systemic treatment. Conventional immunosuppressants have extensive side effect profiles and require close monitoring. In recent decades, there has been increasing interest in developing targeted systemic immunomodulators for AD, as they have been shown to have efficacy for AD as well as favorable safety profiles. Herein, we review the recent data on lebrikizumab, an interleukin (IL)-13 inhibitor, and its potential role in the treatment of AD.

Learn More >

Proliferator-Activated Receptor-Gamma Coactivator-1α Haploinsufficiency Promotes Pain Chronification After Burn Injury.

Tissue injuries such as surgery and trauma are usually accompanied by simultaneous development of acute pain, which typically resolves along with tissue healing. However, in many cases, acute pain does not resolve despite proper tissue repair; rather, it transitions to chronic pain. In this study, we examined whether proliferator-activated receptor-gamma coactivator-1α (PGC-1α), a master regulator of mitochondria biogenesis, is implicated in pain chronification after burn injury in mice.

Learn More >

Search