I am a
Home I AM A Search Login

Accepted

Share this

Pregabalin as a Pain Therapeutic: Beyond Calcium Channels.

Initially developed to generate new treatments for epilepsy, gabapentin, and pregabalin ("gabapentinoids") were engineered to mimic the action of GABA and to modulate GABA metabolism. Rather than their intended pharmacological action on GABA neurotransmission, instead, they exhibit a high affinity for the α2δ-1 and α2δ-2 subunits of voltage-activated calcium channels, wherein binding of gabapentinoids inhibits cellular calcium influx and attenuates neurotransmission. Despite a lack of activity on GABA levels, gabapentin and pregabalin are effective at suppressing seizures and subsequently approved as a new class of antiepileptic therapy for partial-onset epilepsy. Through the same hypothesized molecular mechanism and by controlling neuronal hyperexcitability, gabapentinoids demonstrate clear efficacy in pain management, which has arguably been their most extensively prescribed application to date. In this review, we focus on pregabalin as a second-generation gabapentinoid widely employed in the treatment of a variety of pain conditions. We also discuss the wider functional roles of α2δ subunits and the contributions that pregabalin might play in affecting physiological and pathophysiological processes.

Learn More >

Predicting EQ-5D-5L Utility Scores from the Oswestry Disability Index and Roland-Morris Disability Questionnaire for Low Back Pain.

Cost utility analysis is important for measuring the impact of chronic disease and helps clinicians and policymakers in patient management and policy decisions, but generic preference-based measures are not always considered in clinical studies.

Learn More >

Multi-dimensional role of the parabrachial nucleus in regulating pain-related affective disturbances in trigeminal neuropathic pain.

Neuropathic pain is characterized by sensory abnormalities, such as mechanical allodynia and heat hyperalgesia, associated with alteration in the peripheral and central nervous systems. After trigeminal nerve injury, phenotypic changes that involve the expression of calcitonin gene-related peptide occur in large- and medium-sized myelinated neurons; primary afferent neurons exhibit hyperexcitability because of neuron-glia interactions in the trigeminal ganglion. Increased nociceptive inputs from C- and Aδ-fiber and innocuous inputs from Aβ-fiber into the trigeminal spinal subnucleus caudalis (Vc) contribute to the phenotypic changes; further, they potentiate noxious information transmission in the ascending nociceptive pathways to the thalamus and parabrachial nucleus (PBN). It is noteworthy that C-fiber mediated nociceptive inputs can activate both the Vc-ventral posteromedial thalamic nucleus and Vc-PBN pathways, while mechanoreceptive fiber inputs specifically activate the Vc-PBN pathway. The Vc-PBN pathways project to the central nucleus of the amygdala (CeA) where affective behaviors are modulated. In addition, the PBN interacts with wakefulness-regulating neurons and hunger-sensitive neurons in the hypothalamus, suggesting that the Vc-PBN pathway can modulate sleep and appetite. Therefore, phenotypic changes in primary neurons and stimulus modality-specific activation of ascending nociceptive pathways to the PBN may exacerbate affective aspects of trigeminal neuropathic pain, including behavioral problems, such as sleep disturbance and anorexia, via the PBN-CeA-hypothalamus circuits.

Learn More >

The Efficacy and Safety of Topiramate in the Prevention of Pediatric Migraine: An Update Meta-Analysis.

Migraine is the most common acute primary headache in children and adolescents. In 2014, topiramate became the first preventive drug for migraine, approved by the Food and Drug Administration (FDA) for adolescents. This meta-analysis was aimed to evaluate the efficacy and safety of topiramate in the prevention of pediatric migraine. We searched the PubMed, EMBASE, Cochrane Library, and Chinese National Knowledge Infrastructure (CNKI) databases up to June 2019 for eligible randomized controlled trials (RCTs). The primary outcomes were mean migraine days per month, ≥50% reduction rate, and Pediatric Migraine Disability Assessment Scale (PedMIDAS) scores. RevMan5.3 software was performed for statistical analysis. Overall, 5 RCTs recruiting 531 patients (6-17 years of age) were included in the meta-analysis. The target dose of topiramate was 2 mg/kg (the maintenance phase was 12 weeks), 2-3 mg/kg, 50 mg/day, and 100 mg/day (maintaining for 16 weeks), respectively, in the included studies. Our results demonstrate that participants receiving topiramate had a significant advantage in remitting the monthly migraine days than those receiving placebo, with a mean difference (MD) of -0.78 ( = 531; 95% CI, -1.23 to -0.32; = 3.37; = 0.0008). Topiramate could also reduce the mean PedMIDAS scores ( = 238; 95% CI, -16.53 to -0.49; = 2.43; = 0.04). However, there was no significant difference in the percentage of patients experiencing a ≥50% reduction in monthly headache days between topiramate and placebo groups ( = 531; 95% CI, 0.94-1.77; = 1.58; = 0.11). Topiramate was associated with higher rates of side effects such as weight decrease ( = 395; 95% CI, 2.73-22.98; = 3.81; < 0.01) and paresthesia ( = 531; 95% CI, 3.05-13.18; = 4.94; < 0.01). Topiramate can significantly decrease monthly headache days and migraine-related burden in migraine patients <18 years old. However, it failed to increase 50% response rate. Adverse events seem to be more frequent in topiramate-treated children.

Learn More >

TTX-Resistant Sodium Channels Functionally Separate Silent From Polymodal C-nociceptors.

Pronounced activity-dependent slowing of conduction has been used to characterize mechano-insensitive, "silent" nociceptors and might be due to high expression of Na1.8 and could, therefore, be characterized by their tetrodotoxin-resistance (TTX-r). Nociceptor-class specific differences in action potential characteristics were studied by: (i) calcium imaging in single porcine nerve growth factor (NGF)-responsive neurites; (ii) extracellular recordings in functionally identified porcine silent nociceptors; and (iii) patch-clamp recordings from murine silent nociceptors, genetically defined by nicotinic acetylcholine receptor subunit alpha-3 (CHRNA3) expression. Porcine TTX-r neurites ( = 26) had more than twice as high calcium transients per action potential as compared to TTX-s neurites ( = 18). In pig skin, silent nociceptors ( = 14) characterized by pronounced activity-dependent slowing of conduction were found to be TTX-r, whereas polymodal nociceptors were TTX-s ( = 12) and had only moderate slowing. Mechano-insensitive cold nociceptors were also TTX-r but showed less activity-dependent slowing than polymodal nociceptors. Action potentials in murine silent nociceptors differed from putative polymodal nociceptors by longer duration and higher peak amplitudes. Longer duration AP in silent murine nociceptors linked to increased sodium load would be compatible with a pronounced activity-dependent slowing in pig silent nociceptors and longer AP durations could be in line with increased calcium transients per action potential observed in TTX-resistant NGF responsive porcine neurites. Even though there is no direct link between slowing and TTX-resistant channels, the results indicate that axons of silent nociceptors not only differ in their receptive but also in their axonal properties.

Learn More >

Recent advances in understanding and managing chronic pelvic pain in women with special consideration to endometriosis.

Chronic pelvic pain (CPP) in women is defined variably, but for clinical use it is cyclical or non-cyclical pain of at least 3-6 months' duration. It has major impacts on individuals and society. There are both structural and idiopathic causes. Whereas CPP is not curable in many cases, it is treatable. The most promising approach is multidisciplinary patient-centered care including cause-directed therapy, lifestyle changes, talking therapies, meditation, acupuncture, and physiotherapy (this is not a complete list). One of the most common structural causes for CPP is endometriosis. This review investigates current scientific concepts and recent innovations in this field as well as for CPP in general.

Learn More >

Incisional Injury Modulates Morphine Reward and Morphine-Primed Reinstatement: A Role of Kappa Opioid Receptor Activation.

Persistent use of prescription opioids beyond the period of surgical recovery is a large part of a public health problem linked to the current opioid crisis in the United States. However, few studies have been conducted to examine whether morphine reward is influenced by acute pain and injury.

Learn More >

The metabotropic glutamate receptor 5 negative allosteric modulator fenobam: pharmacokinetics, side effects, and analgesic effects in healthy human subjects.

Metabotropic glutamate receptor 5 (mGlu5) has been shown to modulate nociception in animals, but no mGlu5 antagonists have been developed commercially as analgesics. The mGlu5 antagonist fenobam [N-(3-chlorophenyl)-N'-(4,5-dihydro-1-methyl-4-oxo-1H-imidazole-2-yl)urea] was originally evaluated for development as a non-benzodiazepine anxiolytic. Fenobam is analgesic in numerous mouse pain models, acting exclusively via mGlu5 blockade. Furthermore, fenobam showed no signs of analgesic tolerance with up to two weeks of daily dosing in mice. Analgesic effects of fenobam in humans have not been reported. The purpose of this investigation was to evaluate fenobam pharmacokinetics and analgesic effects in humans. We first evaluated single-dose oral fenobam disposition in a parallel-group dose-escalation study in healthy volunteers. A second investigation tested the analgesic effects of fenobam in an established experimental human pain model of cutaneous sensitization utilizing capsaicin cream and heat, in a double-blind placebo-controlled study. The primary outcome measure was the area of hyperalgesia and allodynia around the area applied with heat/capsaicin. Secondary outcome measures included nociception, measured as pain rating on a visual analog scale, heat-pain detection threshold, and effects on cognition and mood. Fenobam plasma exposures showed considerable inter-individual variability, and were not linear with dose. Fenobam reduced sensitization vs placebo at a single time-point (peak plasma concentration); we found no other difference between fenobam and placebo. Our results suggest highly variable fenobam disposition, and minimal analgesic effects at the dose tested. We suggest that future studies testing analgesic effects of mGlu5 blockade are warranted, but such studies should employ molecules with improved pharmacokinetic profiles.

Learn More >

A Biomarker for Discriminating Between Migraine With and Without Aura: Machine Learning on Functional Connectivity on Resting-State EEGs.

Advanced analyses of electroencephalography (EEG) are rapidly becoming an important tool in understanding the brain's processing of pain. To date, it appears that none have been explored as a way of distinguishing between migraine patients with aura (MWA) vs. those without aura (MWoA). In this work, we apply a mixture of predictive, e.g., classification methods and attribute-selection techniques, and traditional explanatory, e.g., statistical, analyses on functional connectivity measures extracted from EEG signal acquired from at-rest participants (N = 52) during their interictal period and tested them against the distinction between MWA and MWoA. We show that a functional connectivity metric of EEG data obtained during resting state can serve as a sole biomarker to differentiate between MWA and MWoA. Using the proposed analysis, we not only have been able to present high classification results (average classification of 84.62%) but also to discuss the underlying neurophysiological mechanisms upon which our technique is based. Additionally, a more traditional statistical analysis on the selected features reveals that MWoA patients show higher than average connectivity in the Theta band (p = 0.03) at rest than MWAs. We propose that our data-driven analysis pipeline can be used for resting-EEG analysis in any clinical context.

Learn More >

Machine-learning based knowledge discovery in rheumatoid arthritis related registry data to identify predictors of persistent pain.

Early detection of patients with chronic diseases at risk of developing persistent pain is clinically desirable for timely initiation of multimodal therapies. Quality follow-up registries may provide the necessary clinical data; however, their design is not focused on a specific research aim, which poses challenges on the data-analysis strategy. Here, machine-learning was used to identify early parameters that provide information about a future development of persistent pain in rheumatoid arthritis (RA). Data of 288 patients were queried from a registry based on the Swedish Epidemiological Investigation of RA (EIRA). Unsupervised machine-learning identified three distinct patient subgroups (low, median and high) persistent pain intensities. Next, supervised machine learning, implemented as random forests followed by computed ABC analysis-based item categorization, was used to select predictive parameters among 21 different demographic, patient rated and objective clinical factors. The selected parameters were used to train machine-learned algorithms to assign patients pain-related subgroups (1,000 random resamplings, 2/3 training, 1/3 test data). Algorithms trained with three-month data of patient global assessment and health assessment questionnaire provided pain group assignment at a balanced accuracy of 70 %. When restricting the predictors to objective clinical parameters of disease severity, swollen joint count and tender joint count acquired at three months provided a balanced accuracy of rheumatoid arthritis of 59 %. Results indicate that machine-learning is suited to extract knowledge from data queried from pain and disease related registries. Early functional parameters of RA are informative for the development and degree of persistent pain.

Learn More >

Search