I am a
Home I AM A Search Login

Accepted

Share this

Brain Functional Alternations of the Pain-related Emotional and Cognitive Regions in Patients with Chronic Shoulder Pain.

Chronic shoulder pain (CSP) is a common health problem associated with shoulder dysfunction and persistent pain for many different reasons. However, the studies of pain-related functional brain regions in CSP have been poorly investigated. The main purpose of our study was to observe whether there are abnormal functional changes in brain regions in patients with CSP by using functional magnetic resonance imaging (fMRI).

Learn More >

The Role of Chronic Stress in Normal Visceroception: Insights From an Experimental Visceral Pain Study in Healthy Volunteers.

Visceroception is a complex phenomenon comprising the sensation, interpretation, and integration of sensations along the gut-brain axis, including pain or defecatory urgency. Stress is considered a crucial risk factor for the development and maintenance of disorders of gut-brain signaling, which are characterized by altered visceroception. Although the broad role of stress and stress mediators in disturbed visceroception is widely acknowledged, the putative contribution of chronic stress to variations in normal visceroception remains incompletely understood. We aimed to elucidate the role of chronic stress in shaping different facets of visceroception. From a well-characterized, large sample of healthy men and women (N = 180, 50% female), volunteers presenting with low (n = 57) and elevated (n = 61) perceived chronic stress were identified based on the validated Trier Inventory for Chronic Stress (TICS). Visceral sensitivity together with perceived and recalled intensity and defecatory urgency induced by repeated rectal distensions was experimentally assessed, and compared between low and elevated stress groups. Subgroups were compared regarding state anxiety and salivary cortisol concentrations across experimental phases and with respect to psychological measures. Finally, in the full sample and in chronic stress subgroups, a recall bias in terms of a discrepancy between the perception of experimentally-induced symptoms and their recall was tested. Participants with elevated chronic stress presented with increased state anxiety and higher cortisol concentrations throughout the experimental phases compared to the group with low chronic stress. Group differences in visceral sensitivity were not evident. The elevated stress group perceived significantly higher urgency during the stimulation phase, and recalled substantially higher feelings of urgency induced by rectal distensions, while perceived and recalled intensity were comparable between groups. Volunteers with elevated stress exhibited a recall bias in terms of a higher recall relative to mean perception of urgency, whereas no such bias was observed for the intensity of experimental visceral stimulation. Our findings in healthy men and women provide first evidence that the troublesome symptom of urgency might be particularly modifiable by chronic stress and support the relevance of memory biases in visceroception. These results may help to disentangle the impact of chronic stress on altered visceroception in disturbances of gut-brain communication.

Learn More >

Significant Quantitative Differences in Orexin Neuronal Activation After Pain Assessments in an Animal Model of Sickle Cell Disease.

Sickle cell disease is a hemoglobinopathy that causes sickling of red blood cells, resulting in vessel blockage, stroke, anemia, inflammation, and extreme pain. The development and treatment of pain, in particular, neuropathic pain in sickle cell disease patients is poorly understood and impedes our progress toward the development of novel therapies to treat pain associated with sickle cell disease. The orexin/hypocretin system offers a novel approach to treat chronic pain and hyperalgesia. These neuropeptides are synthesized in three regions: perifornical area (PFA), lateral hypothalamus (LH), and dorsomedial hypothalamus (DMH). Data suggest that orexin-A neuropeptide has an analgesic effect on inflammatory pain and may affect mechanisms underlying the maintenance of neuropathic pain. The purpose of this study was to determine whether there are neuronal activation differences in the orexin system as a result of neuropathic pain testing in a mouse model of sickle cell disease. Female transgenic sickle mice that express exclusively (99%) human sickle hemoglobin (HbSS-BERK) and age-/gender-matched controls (HbAA-BERK mice; = 10/group, 20-30 g) expressing normal human hemoglobin A were habituated to each test protocol and environment before collecting baseline measurements and testing. Four measures were used to assess pain-related behaviors: thermal/heat hyperalgesia, cold hyperalgesia, mechanical hyperalgesia, and deep-tissue hyperalgesia. Hypothalamic brain sections from HbAA-BERK and HbSS-BERK mice were processed to visualize orexin and c-Fos immunoreactivity and quantified. The percentage of double labeled neurons in the PFA was significantly higher than the percentage of double labeled neurons in the LH orexin field of HbAA-BERK mice ( < 0.05). The percentages of double labeled neurons in PFA and DMH orexin fields are significantly higher than those neurons in the LH of HbSS-BERK mice ( < 0.05). These data suggest that DMH orexin neurons were preferentially recruited during neuropathic pain testing and a more diverse distribution of orexin neurons may be required to produce analgesia in response to pain in the HbSS-BERK mice. Identifying specific orexin neuronal populations that are integral in neuropathic pain processing will allow us to elucidate mechanisms that provide a more selective, targeted approach in treating of neuropathic pain in sickle cell disease.

Learn More >

Chronic Pain Patients’ Kinesiophobia and Catastrophizing are Associated with Activity Intensity at Different Times of the Day.

To examine the relationship between baseline kinesiophobia and baseline pain catastrophizing with the 4-day average activity intensity at different times of the day while accounting for different wake and sleep-onset times in chronic pain patients.

Learn More >

Inhibition of Muscular Nociceptive Afferents via the Activation of Cutaneous Nociceptors in a Rat Model of Inflammatory Muscle Pain.

Topical irritants such as capsaicin (CAP), peppermint oil (PO), and mustard oil (MO) are effective in relieving inflammatory muscle pain. We investigated the effects of topical irritants in a rat model of inflammatory muscle pain produced by injecting complete Freund's adjuvant (CFA) into the tibialis anterior muscle. CFA-induced mechanical hypersensitivity and the spontaneous activity of muscular nociceptive afferents, and decreased weight-bearing of the hindlimb were relieved by topical application of CAP, PO, or MO on the skin overlying the inflamed muscle. The effects of topical irritants were abolished when applied to the skin on the ipsilateral plantar region or on the contralateral leg, or when the relevant cutaneous nerve or dorsal root was transected. Our results demonstrated that topical irritants may alleviate inflammatory muscle pain via activating cutaneous nociceptors and subsequently inhibiting the abnormal activity of muscular nociceptive neurons.

Learn More >

TRPV1 in experimental autoimmune prostatitis.

Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is a disorder that is characterized by persistent pelvic pain in men of any age. Although several studies suggest that the transient receptor potential vanilloid 1 (TRPV1) channel is involved in various pathways of chronic pain, the TRPV1 channel has not been implicated in chronic pelvic pain associated with CP/CPPS.

Learn More >

Medication overuse headache: The trouble with prevalence estimates.

Learn More >

Primary headache and migraine in headache specialists – does personal history of doctors matter?

Migraine is a common disorder affecting more than 10% of the population. The prevalence of migraine among physicians and, in particular, among headache specialists is widely unknown as is the impact of suffering from migraine on the attitudes towards migraine and on treatment recommendations of physicians. We designed a survey among headache specialists and neurologists and compared the results to general pain specialists and general practitioners.

Learn More >

A neurophysiological investigation of anticipation to pain in Parkinson’s disease.

Chronic pain is common in people with Parkinson's disease, and is often considered to be caused by the motor impairments associated with the disease. Altered top-down processing of pain characterises several chronic pain conditions and occurs when the cortex modifies nociceptive processing in the brain and spinal cord. This contrasts with bottom-up modulation of pain whereby nociceptive processing is modified on its way up to the brain. Although several studies have demonstrated altered bottom-up pain processing in Parkinson's, the contribution of enhanced anticipation to pain and atypical top-down processing of pain has not been fully explored. During the anticipation to noxious stimuli, EEG source localisation reported an increased activation in the mid-cingulate cortex and supplementary motor area in the Parkinson's disease group compared to the healthy control group during Mid [-1500 -1000] and Late anticipation [-500 0], indicating enhanced cortical activity before noxious stimulation. The Parkinson's disease group was also more sensitive to the laser and required a lower voltage level to induce pain. This study provides evidence supporting the hypothesis that enhanced top-down processing of pain may contribute to the development of chronic pain in Parkinson's. Additional research to establish whether the altered anticipatory response is unique to noxious stimuli is required as no control stimulus was used within the current study. With further research to confirm these findings, our results inform a scientific rationale for novel treatment strategies of pain in Parkinson's disease, including mindfulness, cognitive therapies and other approaches targeted at improving top down processing of pain. This article is protected by copyright. All rights reserved.

Learn More >

Working memory and visual discrimination distraction tasks improve cold pressor pain tolerance in children.

Distraction is a well-established pain management technique for children experiencing acute pain, although the mechanisms underlying the effectiveness of distraction are not well understood. It has been postulated that engagement of executive functions, such as working memory, may be a critical factor in attenuating pain via distraction. To test this hypothesis, we compared a 1-back task requiring engagement of working memory with a simple visual discrimination task demanding focused attention, but lower cognitive load (0-back).

Learn More >

Search