I am a
Home I AM A Search Login

Accepted

Share this

Treatment of chronic neuropathic pain: purine receptor modulation.

Extracellular nucleosides and nucleotides have widespread functions in responding to physiological stress. The "purinome" encompasses four G protein-coupled receptors (GPCRs) for adenosine, eight GPCRs activated by nucleotides (P2YRs), seven adenosine 5'-triphosphate(ATP)-gated P2X ion channels, as well as the associated enzymes and transporters that regulate native agonist levels. Purinergic signaling modulators, such as receptor agonists and antagonists, have potential for treating chronic pain. Adenosine and its analogues potently suppress nociception in preclinical models by activating A1 and/or A3 adenosine receptors(ARs), but safely harnessing this pathway to clinically treat pain has not been achieved. Both A2AAR agonists and antagonists are efficacious in pain models. Highly selective A3AR agonists offer a novel approach to treat chronic pain. We have explored the structure activity relationship of nucleoside derivatives at this subtype using a computational structure-based approach. Novel A3AR agonists for pain control containing a bicyclic ring system (bicyclo[3.1.0]hexane) in place of ribose were designed and screened using an in vivo phenotypic model, which reflected both pharmacokinetic and pharmacodynamic parameters. High specificity (>10,000-fold selective for A3AR) was achieved with the aid of receptor homology models based on related GPCR structures. These A3AR agonists are well tolerated in vivo and highly efficacious in models of chronic neuropathic pain. Furthermore, signaling molecules acting at P2X3, P2X4, P2X7 and P2Y12Rs play critical roles in maladaptive pain neuroplasticity, and their antagonists reduce chronic or inflammatory pain, and, therefore, purine receptor modulation is a promising approach for future pain therapeutics. Structurally novel antagonists for these nucleotide receptors were discovered recently.

Learn More >

Enhanced mindfulness based stress reduction (MBSR+) in episodic migraine: a randomized clinical trial with MRI outcomes.

We aimed to evaluate the efficacy of an enhanced mindfulness based stress reduction (MBSR+) versus stress management for headache (SMH). We performed a randomized, assessor-blind, clinical trial of 98 adults with episodic migraine recruited at a single academic center comparing MBSR+ (n=50) to SMH (n=48). MBSR+ and SMH were delivered weekly by group for 8 weeks, then bi-weekly for another 8 weeks. The primary clinical outcome was reduction in headache days from baseline to 20 weeks. MRI outcomes included activity of left dorsolateral prefrontal cortex (DLPFC) and cognitive task network during cognitive challenge, resting state connectivity of right dorsal anterior insula (daINS) to DLPFC and cognitive task network, and gray matter volume of DLPFC, daINS, and anterior midcingulate. Secondary outcomes were headache-related disability, pain severity, response to treatment, migraine days, and MRI whole-brain analyses. Reduction in headache days from baseline to 20 weeks was greater for MBSR+ (7.8 [95%CI, 6.9-8.8] to 4.6 [95%CI, 3.7-5.6]) than for SMH (7.7 [95%CI 6.7-8.7] to 6.0 [95%CI, 4.9-7.0]) (P=0.04). 52% of the MBSR+ group showed a response to treatment (50% reduction in headache days) compared with 23% in the SMH group (P=0.004). Reduction in headache-related disability was greater for MBSR+ (59.6 [95%CI, 57.9-61.3] to 54.6 [95%CI, 52.9-56.4]) than SMH (59.6 [95%CI, 57.7-61.5] to 57.5 [95%CI, 55.5-59.4]) (P=0.02). There were no differences in clinical outcomes at 52 weeks or MRI outcomes at 20 weeks, although changes related to cognitive networks with MBSR+ were observed. MBSR+ is an effective treatment option for episodic migraine.

Learn More >

mHealth: providing a mindfulness app for women with chronic pelvic pain in gynaecology outpatient clinics: qualitative data analysis of user experience and lessons learnt.

To determine whether a pre-existing smartphone app to teach mindfulness meditation is acceptable to women with chronic pelvic pain (CPP) and can be integrated into clinical practice within the National Health Service (NHS) CPP pathways, and to inform the design of a potential randomised clinical trial.

Learn More >

MEMPHIS: a smartphone app using psychological approaches for women with chronic pelvic pain presenting to gynaecology clinics: a randomised feasibility trial.

To evaluate the feasibility of a randomised trial of a modified, pre-existing, mindfulness meditation smartphone app for women with chronic pelvic pain.

Learn More >

Mechanism and site of action of big dynorphin on ASIC1a.

Acid-sensing ion channels (ASICs) are proton-gated cation channels that contribute to neurotransmission, as well as initiation of pain and neuronal death following ischemic stroke. As such, there is a great interest in understanding the in vivo regulation of ASICs, especially by endogenous neuropeptides that potently modulate ASICs. The most potent endogenous ASIC modulator known to date is the opioid neuropeptide big dynorphin (BigDyn). BigDyn is up-regulated in chronic pain and increases ASIC-mediated neuronal death during acidosis. Understanding the mechanism and site of action of BigDyn on ASICs could thus enable the rational design of compounds potentially useful in the treatment of pain and ischemic stroke. To this end, we employ a combination of electrophysiology, voltage-clamp fluorometry, synthetic BigDyn analogs, and noncanonical amino acid-mediated photocrosslinking. We demonstrate that BigDyn binding results in an ASIC1a closed resting conformation that is distinct from open and desensitized states induced by protons. Using alanine-substituted BigDyn analogs, we find that the BigDyn modulation of ASIC1a is primarily mediated through electrostatic interactions of basic amino acids in the BigDyn N terminus. Furthermore, neutralizing acidic amino acids in the ASIC1a extracellular domain reduces BigDyn effects, suggesting a binding site at the acidic pocket. This is confirmed by photocrosslinking using the noncanonical amino acid azidophenylalanine. Overall, our data define the mechanism of how BigDyn modulates ASIC1a, identify the acidic pocket as the binding site for BigDyn, and thus highlight this cavity as an important site for the development of ASIC-targeting therapeutics.

Learn More >

NICE recommends migraine drug that could treat 10 000 patients in England.

Learn More >

Headache and non-headache symptoms provoked by nitroglycerin in migraineurs: A human pharmacological triggering study.

Studying a spontaneous migraine attack is challenging, particularly the earliest components. Nitroglycerin is a potent, reliable and reproducible migraine trigger of the entirety of the migraine attack, making its use experimentally attractive.

Learn More >

Altered regional cerebral blood flow and hypothalamic connectivity immediately prior to a migraine headache.

There is evidence of altered resting hypothalamic activity patterns and connectivity prior to a migraine, however it remains unknown if these changes are driven by changes in overall hypothalamic activity levels. If they are, it would corroborate the idea that changes in hypothalamic function result in alteration in brainstem pain processing sensitivity, which either triggers a migraine headache itself or allows an external trigger to initiate a migraine headache. We hypothesise that hypothalamic activity increases immediately prior to a migraine headache and this is accompanied by altered functional connectivity to pain processing sites in the brainstem.

Learn More >

Pannexin-1 in the CNS: emerging concepts in health and disease.

Pannexin-1 (Panx1) is a large pore membrane channel with unique conduction properties ranging from non-selective ion permeability to the extracellular release of signalling molecules. The release of ATP by Panx1 has been particularly well-characterized with implications in purine signalling across a variety of biological contexts. Panx1 activity is also important in inflammasome formation and the secretion of pro-inflammatory molecules such as interleukin-1β. Within the central nervous system (CNS), Panx1 is expressed on both neurons and glia, and is thought to mediate crosstalk between these cells. A growing body of literature now supports the pathological activity of Panx1 in contributing to disease processes including seizure, stroke, migraine headache and chronic pain. Emerging evidence also reveals a physiological function of Panx1 in regulating neural stem cell survival, neuronal maturation and synaptic plasticity, with possible relevance to normal cognitive functioning. The aim of this review is to summarize the current evidence regarding the roles of Panx1 in the CNS, with emphasis on how putative signalling properties and activation mechanisms of this channel contribute to various physiological and pathophysiological processes.

Learn More >

Unrecognized challenges of treating status migrainosus: An observational study.

Status migrainosus is a condition with limited epidemiological knowledge, and no evidence-based treatment guideline or rational-driven assessment of successful treatment outcome. To fill this gap, we performed a prospective observational study in which we documented effectiveness of treatment approaches commonly used in a tertiary headache clinic.

Learn More >

Search