I am a
Home I AM A Search Login

Accepted

Share this

Neuropathic and cAMP-induced pain behavior is ameliorated in mice lacking CNGB1.

Cyclic nucleotide-gated (CNG) channels, which are directly activated by cAMP and cGMP, have long been known to play a key role in retinal and olfactory signal transduction. Emerging evidence indicates that CNG channels are also involved in signaling pathways important for pain processing. Here, we found that the expression of the channel subunits CNGA2, CNGA3, CNGA4 and CNGB1 in dorsal root ganglia, and of CNGA2 in the spinal cord, is transiently altered after peripheral nerve injury in mice. Specifically, we show using in situ hybridization and quantitative real-time RT-PCR that CNG channels containing the CNGB1b subunit are localized to populations of sensory neurons and predominantly excitatory interneurons in the spinal dorsal horn. In CNGB1 knockout (CNGB1) mice, neuropathic pain behavior is considerably attenuated whereas inflammatory pain behavior is normal. Finally, we provide evidence to support CNGB1 as a downstream mediator of cAMP signaling in pain pathways. Altogether, our data suggest that CNGB1-positive CNG channels specifically contribute to neuropathic pain processing after peripheral nerve injury.

Learn More >

Mu opioid receptor in microglia contributes to morphine analgesic tolerance, hyperalgesia, and withdrawal in mice.

A major challenge in medicine is developing potent pain therapies without the adverse effects of opiates. Neuroinflammation and in particular microglial activation have been shown to contribute to these effects. However, the implication of the microglial mu opioid receptor (MOR) is not known. We developed a novel conditional knockout (cKO) mouse line, wherein MOR is deleted in microglia. Morphine analgesic tolerance was delayed in both sexes in cKO mice in the hot plate assay. Opioid-induced hyperalgesia (OIH) as measured in the tail immersion assay was abolished in male cKO mice, and physical dependence to morphine as assessed by naloxone-induced withdrawal was attenuated in female cKO mice. Our results show a sex-dependent contribution of microglial MOR in morphine analgesic tolerance, OIH, and physical dependence. In conclusion, our data suggest that blockade of microglial MOR could represent a therapeutic target for opiate analgesia without the opiate adverse effects.

Learn More >

Neuroimmune modulation of pain and regenerative pain medicine.

Regenerative pain medicine, which seeks to harness the body's own reparative capacity, is rapidly emerging as a field within pain medicine and orthopedics. It is increasingly appreciated that common analgesic mechanisms for these treatments depend on neuroimmune modulation. In this Review, we discuss recent progress in mechanistic understanding of nociceptive sensitization in chronic pain with a focus on neuroimmune modulation. We also examine the spectrum of regenerative outcomes, including preclinical and clinical outcomes. We further distinguish the analgesic mechanisms of regenerative therapies from those of cellular replacement, creating a conceptual and mechanistic framework to evaluate future research on regenerative medicine.

Learn More >

Alleviation of migraine symptoms by application of repetitive peripheral magnetic stimulation to myofascial trigger points of neck and shoulder muscles – A randomized trial.

Migraine is a burdensome disease with an especially high prevalence in women between the age of 15 and 49 years. Non-pharmacological, non-invasive therapeutic methods to control symptoms are increasingly in demand to complement a multimodal intervention approach in migraine. Thirty-seven subjects (age: 25.0 ± 4.1 years; 36 females) diagnosed with high-frequency episodic migraine who presented at least one active myofascial trigger point (mTrP) in the trapezius muscles and at least one latent mTrP in the deltoid muscles bilaterally prospectively underwent six sessions of repetitive peripheral magnetic stimulation (rPMS) over two weeks. Patients were randomly assigned to receive rPMS applied to the mTrPs of the trapezius (n = 19) or deltoid muscles (n = 18). Whereas the trapezius muscle is supposed to be part of the trigemino-cervical complex (TCC) and, thus, involved in the pathophysiology of migraine, the deltoid muscle was not expected to interfere with the TCC and was therefore chosen as a control stimulation site. The headache calendar of the German Migraine and Headache Society (DMKG) as well as the Migraine Disability Assessment (MIDAS) questionnaire were used to evaluate stimulation-related effects. Frequency of headache days decreased significantly in both the trapezius and the deltoid group after six sessions of rPMS (trapezius group: p = 0.005; deltoid group: p = 0.003). The MIDAS score decreased significantly from 29 to 13 points (p = 0.0004) in the trapezius and from 31 to 15 points (p = 0.002) in the deltoid group. Thus, rPMS applied to mTrPs of neck and shoulder muscles offers a promising approach to alleviate headache frequency and symptom burden. Future clinical trials are needed to examine more profoundly these effects, preferably using a sham-controlled setting.

Learn More >

Forty-two Million Ways to Describe Pain: Topic Modeling of 200,000 PubMed Pain-Related Abstracts Using Natural Language Processing and Deep Learning-Based Text Generation.

Recent efforts to update the definitions and taxonomic structure of concepts related to pain have revealed opportunities to better quantify topics of existing pain research subject areas.

Learn More >

Physical Activity for the Treatment of Chronic Low Back Pain in Elderly Patients: A Systematic Review.

Chronic low back pain (CLBP) affects nearly 20-25% of the population older than 65 years, and it is currently the main cause of disability both in the developed and developing countries. It is crucial to reach an optimal management of this condition in older patients to improve their quality of life. This review evaluates the effectiveness of physical activity (PA) to improve disability and pain in older people with non-specific CLBP. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines were used to improve the reporting of the review. Individual risk of bias of single studies was assessed using Rob 2 tool and ROBINS-I tool. The quality of evidence assessment was performed using GRADE analysis only in articles that presents full data. The articles were searched in different web portals (Medline, Scopus, CINAHL, EMBASE, and CENTRAL). All the articles reported respect the following inclusion criteria: patients > 65 years old who underwent physical activities for the treatment of CLBP. A total of 12 studies were included: 7 randomized controlled trials (RCT), 3 non-randomized controlled trials (NRCT), 1 pre and post intervention study (PPIS), and 1 case series (CS). The studies showed high heterogeneity in terms of study design, interventions, and outcome variables. In general, post-treatment data showed a trend in the improvement for disability and pain. However, considering the low quality of evidence of the studies, the high risk of bias, the languages limitations, the lack of significant results of some studies, and the lack of literature on this argument, further studies are necessary to improve the evidences on the topic.

Learn More >

Role of mechanosensitive ion channels in the sensation of pain.

Our ability to sense mechanical cues from our environment depend on the capacity of molecular sensor capable of converting mechanical energy into biochemical or electrical signals. This process, termed mechanotransduction, relies on the activity of mechanosensitive ion channels (MSCs) that are expressed in most tissues, including cells of the inner and outer ear, sensory and sympathetic neurons, and vascular cells. However, the precise role these channels play in the physiology of the cells and organs, where they are expressed is not completely understood. In this review, we will explore some of the recent findings on the role of MSCs to our sense of mechanical pain.

Learn More >

Intrathecally administered perampanel alleviates neuropathic and inflammatory pain in rats.

Chronic pain conditions such as neuropathic pain and persistent inflammatory pain are difficult to manage. Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors modulate nociceptive processing at the spinal dorsal horn. Previous studies have shown that intrathecal AMPA receptor antagonists exert antinociception in various pain states. Perampanel is a selective, noncompetitive inhibitor of the AMPA receptor and used clinically as an antiepileptic drug. Little is known about antinociceptive action of perampanel in the spinal cord. Here, we explored whether intrathecal perampanel attenuates neuropathic and inflammatory pain. A chronic constriction injury (CCI) to the sciatic nerve was induced in male Sprague-Dawley rats. We evaluated the effects of intrathecal perampanel (10, 30, or 100 μg) on mechanical and cold hyperalgesia using the electronic von Frey and cold plate tests, respectively. Normal rats were assessed in terms of inflammatory nociception using the formalin test, and motor function employing the rotarod test. In the CCI rats, spinally applied perampanel inhibited mechanical and cold hyperalgesia dose-dependently. In normal rats, perampanel remarkably suppressed the early- and late-phase responses in the formalin test, and it weakly affected motor performance for a short period at the highest dose. These results suggest that perampanel exerts antinociceptive actions on neuropathic and persistent inflammatory pain in the spinal cord. Perampanel may be safe and beneficial remedy for patients with such pain conditions. In addition, AMPA receptor can be a promising target for treatment of chronic pain.

Learn More >

Interstitial cystitis/bladder pain syndrome: The evolving landscape, animal models and future perspectives.

Interstitial cystitis/bladder pain syndrome is a debilitating condition of unknown etiology characterized by persistent pelvic pain with lower urinary tract symptoms and comprises a wide variety of potentially clinically useful phenotypes with different possible etiologies. Current clinicopathological and genomic evidence suggests that interstitial cystitis/bladder pain syndrome should be categorized by the presence or absence of Hunner lesions, rather than by clinical phenotyping based on symptomatology. The Hunner lesion subtype is a distinct inflammatory disease with proven bladder etiology characterized by epithelial denudation and enhanced immune responses frequently accompanied by clonal expansion of infiltrating B cells, with potential engagement of infection. Meanwhile, the non-Hunner lesion subtype is a non-inflammatory disorder with little evidence of bladder etiology. It is potentially associated with urothelial malfunction and neurophysiological dysfunction, and frequently presents with somatic and/or psychological symptoms, that commonly result in central nervous sensitization. Animal models of autoimmune cystitis and neurogenic sensitization might serve as disease models for the Hunner lesion and non-Hunner lesion subtypes, respectively. Here, we revisit the taxonomy of interstitial cystitis/bladder pain syndrome according to current research, and discuss its potential pathophysiology and representative animal models. Categorization of interstitial cystitis/bladder pain syndrome based on cystoscopy is mandatory to design optimized treatment and research strategies for each subtype. A tailored approach that specifically targets the characteristic inflammation and epithelial denudation for the Hunner lesion subtype, or the urothelial malfunction, sensitized/altered nervous system and psychosocial problems for the non-Hunner lesion subtype, is essential for better clinical management and research progress in this complex condition.

Learn More >

Migraine and Ischemic Stroke in Women. A Narrative Review.

Migraine is associated with ischemic stroke. Women are 3-fold as likely as men to have migraine, and high estrogen states increase the risk of migraine with aura (MWA), venous thromboembolism (VTE), and of stroke. We review the epidemiological and mechanistic evidence of the migraine-stroke relationship and its risk factors, with a focus on women and conditions that exclusively or predominantly affect them.  METHODS: We performed a search of MEDLINE/PubMed database, then a narrative review of the epidemiological evidence of the migraine-stroke relationship as well as the evidence for arterial, thrombophilic, and cardiac mechanisms to explain this connection. We examine the implications of this evidence for the diagnostic evaluation and treatment of MWA.

Learn More >

Search