I am a
Home I AM A Search Login

Accepted

Share this

Cortical morphological changes in chronic migraine in a Taiwanese cohort: Surface- and voxel-based analyses.

Learn More >

Chronic Post-Surgical Pain in the Frail Older Adult.

Older adults are the fastest growing segment of the population and surgical procedures in this group increase each year. Chronic post-surgical pain is an important consideration in the older adult as it affects recovery, physical functioning, and overall quality of life. It is increasingly recognized as a public health issue but there is a need to improve our understanding of the disease process as well as the appropriate treatment and prevention. Frailty, delirium, and cognition influence post-operative outcomes in older adults and have been implicated in the development of chronic post-surgical pain. Further research must be conducted to fully understand the role they play in the occurrence of chronic post-surgical pain in the older adult. Additionally, careful attention must be given to the physiologic, cognitive, and comorbidity differences between the older adult and the general population. This is critical for elucidating the proper chronic post-surgical pain treatment and prevention strategies to ensure that the older adult undergoing surgical intervention will have an appropriate and desirable post-operative outcome.

Learn More >

Non-steroidal anti-inflammatory drugs for acute low back pain.

Acute low back pain (LBP) is a common health problem. Non-steroidal anti-inflammatory drugs (NSAIDs) are often used in the treatment of LBP, particularly in people with acute LBP. In 2008, a Cochrane Review was published about the efficacy of NSAIDs for LBP (acute, chronic, and sciatica), identifying a small but significant effect in favour of NSAIDs compared to placebo for short-term pain reduction and global improvement in participants with acute LBP. This is an update of the previous review, focusing on acute LBP.

Learn More >

Clinical Integration of a Smartphone App for Patients With Chronic Pain: Retrospective Analysis of Predictors of Benefits and Patient Engagement Between Clinic Visits.

Although many pain-related smartphone apps exist, little attention has been given to understanding how these apps are used over time and what factors contribute to greater compliance and patient engagement.

Learn More >

Localized sympathectomy reduces peripheral nerve regeneration and pain behaviors in two rat neuropathic pain models.

Previous studies have shown that the peripheral nerve regeneration process is linked to pain in several neuropathic pain models. Other studies show that sympathetic blockade may relieve pain in some pain models and clinical conditions. This study examined reduction in peripheral nerve regeneration as one possible mechanism for relief of neuropathic pain by sympathetic blockade. A "microsympathectomy", consisting of cutting the grey rami containing sympathetic postganglionic axons where they enter the L4 and L5 spinal nerves, reduced mechanical hypersensitivity in two different rat neuropathic pain models. In the spinal nerve ligation model, in which some functional regeneration and reinnervation of the ligated spinal nerve can be observed, microsympathectomy reduced functional and anatomical measures of regeneration as well as expression of growth-associated protein 43 (GAP43), a regeneration-related protein. In the spared nerve injury model, in which functional reinnervation is not possible and the futile regeneration process results in formation of a neuroma, microsympathectomy reduced neuroma formation and GAP43 expression. In both models, microsympathectomy reduced macrophage density in the sensory ganglia and peripheral nerve. This corroborates previous work showing that sympathetic nerves may locally affect immune function. The results further highlight the challenge of improving pain in neuropathic conditions without inhibiting peripheral nerve regeneration that might otherwise be possible and desired.

Learn More >

Challenging the challenge: a randomized controlled trial evaluating the inflammatory response and pain perception of healthy volunteers after single-dose LPS administration, as a potential model for inflammatory pain in early-phase drug development.

Following an infection, cytokines not only regulate the acute immune response, but also contribute to symptoms such as inflammatory hyperalgesia. We aimed to characterize the acute inflammatory response induced by a human endotoxemia model, and its effect on pain perception using evoked pain tests in two different dose levels. We also attempted to determine whether combining a human endotoxemia challenge with measurement of pain thresholds in healthy subjects could serve as a model to study drug effects on inflammatory pain.

Learn More >

The Vaso-Occlusive Pain Crisis in Sickle Cell Disease: Definition, Pathophysiology, and Management.

Early diagnosis, treatment, and prevention of a vaso-occlusive crisis (VOC) is critical to the management of patients with sickle cell disease. It is essential to differentiate between VOC-associated pain and chronic pain, hyperalgesia, neuropathy, and neuropathic pain. The pathophysiology of VOCs includes polymerization of abnormal sickle hemoglobin, inflammation, and adhesion. Hydroxyurea, L-glutamine, crizanlizumab, and voxelotor have been approved by the US Food and Drug Administration for reducing the frequency of VOCs; the European Medicines Agency has approved only hydroxyurea. Other novel treatments are in late-stage clinical development in both the United States and the European Union. Development of agents for prevention and treatment of VOCs should be driven by our understanding of its pathophysiology.

Learn More >

Lidocaine Alleviates Neuropathic Pain and Neuroinflammation by Inhibiting HMGB1 Expression to Mediate MIP-1α/CCR1 Pathway.

High mobility group box 1 (HMGB1) released from sensory nerve tissues can induce neuropathic pain. Whether HMGB1 is implicated in the mechanism underlying the effect of lidocaine in pain management remains to be determined. This study aims to explore the effect of lidocaine in a rat model of spared nerve injury (SNI) and the underlying mechanism. An SNI model was established via nerve ligation. Two weeks after the SNI model was established, rats were intrathecally injected with lidocaine, an HMGB1 antibody (HMG Ab), an MIP-1α antibody (MIP-1α Ab), a CCR1 inhibitor (CCR1-RS) or a CCR5 antagonist (CCR5-Mar). Pain behaviors were assessed before and after model establishment to calculate the number of spontaneous flinches (NSF), paw withdrawal threshold (PWT), paw withdrawal thermal latency (PWL) and sciatic function index (SFI). Cell apoptosis and the inflammatory response in the cerebrospinal fluid (CSF) were detected by TUNEL staining and ELISA. The mRNA and protein expression levels of MIP-1α, CCR1 and CCR5 were determined by RT-PCR and Western blotting. The expression levels of HMGB1, MIP-1α, CCR1 and CCR5 were measured by Western blotting and immunofluorescence. Pain behavior testing in SNI rats showed that SNI rats exhibited an increased NSF and a decreased PWT, PWL and SFI. Cell apoptosis in the spinal dorsal horn and the generation of inflammatory cytokines were enhanced in SNI rats, and the expression levels of HMGB1, MIP-1α, CCR1 and CCR5 were upregulated. HMGB1 cytoplasmic translocation, the coexpression of MIP-1α with NeuN, and the coexpression of CCR1 and CCR5 with OX42 were also observed in SNI rats. Neuropathic pain and neuroinflammation were suppressed by the intrathecal injection of lidocaine, HMG Ab, MIP-1α Ab, CCR1-RS or CCR5-Mar. Lidocaine inhibited the expression levels of HMGB1, MIP-1α, CCR1 and CCR5, and the HMGB1 antibody suppressed the expression of MIP-1α, CCR1 and CCR5. Lidocaine attenuates neuropathic pain and neuroinflammation by inhibiting HMGB1 to regulate the MIP-1α/CCR1/CCR5 pathway. Graphical Abstract.

Learn More >

Mechanical allodynia in mice with tenascin-X deficiency associated with Ehlers-Danlos syndrome.

Tenascin-X (TNX) is a member of the extracellular matrix glycoprotein tenascin family, and TNX deficiency leads to Ehlers-Danlos syndrome, a heritable human disorder characterized mostly by skin hyperextensibility, joint hypermobility, and easy bruising. TNX-deficient patients complain of chronic joint pain, myalgia, paresthesia, and axonal polyneuropathy. However, the molecular mechanisms by which TNX deficiency complicates pain are unknown. Here, we examined the nociceptive behavioral responses of TNX-deficient mice. Compared with wild-type mice, TNX-deficient mice exhibited mechanical allodynia but not thermal hyperalgesia. TNX deficiency also increased pain sensitivity to chemical stimuli and aggravated early inflammatory pain elicited by formalin. TNX-deficient mice were significantly hypersensitive to transcutaneous sine wave stimuli at frequencies of 250 Hz (Aδ fiber responses) and 2000 Hz (Aβ fiber responses), but not to stimuli at frequency of 5 Hz (C fiber responses). In addition, the phosphorylation levels of extracellular signal-related kinase, an active neuronal marker, and the activity of NADPH-diaphorase, a neuronal nitric oxide activation marker, were enhanced in the spinal dorsal horns of TNX-deficient mice. These results suggest that TNX deficiency contributes to the development of mechanical allodynia and hypersensitivity to chemical stimuli, and it induces hypersensitization of myelinated A fibers and activation of the spinal dorsal horn.

Learn More >

Increased neck muscle stiffness in migraine patients with ictal neck pain: A shear wave elastography study.

Learn More >

Search