I am a
Home I AM A Search Login

Accepted

Share this

Exploring EEG Spectral Patterns in Episodic and Chronic Migraine During the Interictal State: Determining Frequencies of Interest in the Resting State.

The analysis of particular (electroencephalographic) EEG frequency bands has revealed new insights relative to the neural dynamics that, when studying the EEG spectrum as a whole, would have remained hidden. This study is aimed at characterizing spectral resting state EEG patterns for assessing possible differences of episodic and chronic migraine during the interictal period. For that purpose, a novel methodology for analyzing specific frequencies of interest was performed.

Learn More >

1-O-Acetylgeopyxin A, a derivative of a fungal metabolite, blocks tetrodotoxin-sensitive voltage-gated sodium, calcium channels and neuronal excitability which correlates with inhibition of neuropathic pain.

Chronic pain can be the result of an underlying disease or condition, medical treatment, inflammation, or injury. The number of persons experiencing this type of pain is substantial, affecting upwards of 50 million adults in the United States. Pharmacotherapy of most of the severe chronic pain patients includes drugs such as gabapentinoids, re-uptake blockers and opioids. Unfortunately, gabapentinoids are not effective in up to two-thirds of this population and although opioids can be initially effective, their long-term use is associated with multiple side effects. Therefore, there is a great need to develop novel non-opioid alternative therapies to relieve chronic pain. For this purpose, we screened a small library of natural products and their derivatives in the search for pharmacological inhibitors of voltage-gated calcium and sodium channels, which are outstanding molecular targets due to their important roles in nociceptive pathways. We discovered that the acetylated derivative of the ent-kaurane diterpenoid, geopyxin A, 1-O-acetylgeopyxin A, blocks voltage-gated calcium and tetrodotoxin-sensitive voltage-gated sodium channels but not tetrodotoxin-resistant sodium channels in dorsal root ganglion (DRG) neurons. Consistent with inhibition of voltage-gated sodium and calcium channels, 1-O-acetylgeopyxin A reduced reduce action potential firing frequency and increased firing threshold (rheobase) in DRG neurons. Finally, we identified the potential of 1-O-acetylgeopyxin A to reverse mechanical allodynia in a preclinical rat model of HIV-induced sensory neuropathy. Dual targeting of both sodium and calcium channels may permit block of nociceptor excitability and of release of pro-nociceptive transmitters. Future studies will harness the core structure of geopyxins for the generation of antinociceptive drugs.

Learn More >

Anti-inflammatory protein TSG-6 secreted by bone marrow mesenchymal stem cells attenuates neuropathic pain by inhibiting the TLR2/MyD88/NF-κB signaling pathway in spinal microglia.

Neuroinflammation plays a vital role in the development and maintenance of neuropathic pain. Recent evidence has proved that bone marrow mesenchymal stem cells (BMSCs) can inhibit neuropathic pain and possess potent immunomodulatory and immunosuppressive properties via secreting a variety of bioactive molecules, such as TNF-α-stimulated gene 6 protein (TSG-6). However, it is unknown whether BMSCs exert their analgesic effect against neuropathic pain by secreting TSG-6. Therefore, the present study aimed to evaluate the analgesic effects of TSG-6 released from BMSCs on neuropathic pain induced by chronic constriction injury (CCI) in rats and explored the possible underlying mechanisms in vitro and in vivo.

Learn More >

Use of outpatient medical care by headache patients in Germany: a population-based cross-sectional study.

Headache sufferers in need of professional health care often do not utilize the care available, and factors influencing headache-specific physician consultation are not yet understood. Objectives of this study are (1) to assess self-reported headache-specific physician consultations and (2) to identify headache-related and sociodemographic predictors.

Learn More >

The OPTIMIZE study: protocol of a pragmatic sequential multiple assessment randomized trial of nonpharmacologic treatment for chronic, nonspecific low back pain.

Low back pain is a prevalent condition that causes a substantial health burden. Despite intensive and expensive clinical efforts, its prevalence is growing. Nonpharmacologic treatments are effective at improving pain-related outcomes; however, treatment effect sizes are often modest. Physical therapy (PT) and cognitive behavioral therapy (CBT) have the most consistent evidence of effectiveness. Growing evidence also supports mindfulness-based approaches. Discussions with providers and patients highlight the importance of discussing and trying options to find the treatment that works for them and determining what to do when initial treatment is not successful. Herein, we present the protocol for a study that will evaluate evidence-based, protocol-driven treatments using PT, CBT, or mindfulness to examine comparative effectiveness and optimal sequencing for patients with chronic low back pain.

Learn More >

Lost productivity associated with headache and depression: a quality improvement project identifying a patient population at risk.

This quality improvement project was implemented in order to highlight the association between headache, mTBI and depression on lost productivity and resource utilization.

Learn More >

Biased signaling by endogenous opioid peptides.

Opioids, such as morphine and fentanyl, are widely used for the treatment of severe pain; however, prolonged treatment with these drugs leads to the development of tolerance and can lead to opioid use disorder. The "Opioid Epidemic" has generated a drive for a deeper understanding of the fundamental signaling mechanisms of opioid receptors. It is generally thought that the three types of opioid receptors (μ, δ, κ) are activated by endogenous peptides derived from three different precursors: Proopiomelanocortin, proenkephalin, and prodynorphin. Posttranslational processing of these precursors generates >20 peptides with opioid receptor activity, leading to a long-standing question of the significance of this repertoire of peptides. Here, we address some aspects of this question using a technical tour de force approach to systematically evaluate ligand binding and signaling properties ([S]GTPγS binding and β-arrestin recruitment) of 22 peptides at each of the three opioid receptors. We show that nearly all tested peptides are able to activate the three opioid receptors, and many of them exhibit agonist-directed receptor signaling (functional selectivity). Our data also challenge the dogma that shorter forms of β-endorphin do not exhibit receptor activity; we show that they exhibit robust signaling in cultured cells and in an acute brain slice preparation. Collectively, this information lays the groundwork for improved understanding of the endogenous opioid system that will help in developing more effective treatments for pain and addiction.

Learn More >

Discovery of DS-1971a, a Potent Selective NaV1.7 Inhibitor.

A highly potent, selective NaV1.7 inhibitor, DS-1971a has been discovered. Exploration of the left-hand phenyl ring of sulfonamide derivatives (I and II) led to the discovery of novel series of cycloalkane derivatives with high NaV1.7 inhibitory potency in vitro. As the right-hand heteroaromatic ring affected the mechanism-based inhibition liability of CYP3A4, replacement of this moiety resulted in the generation of 4-pyrimidyl derivatives. Additionally, GSH adducts formation, which can cause idiosyncratic drug toxicity, was successfully avoided by this modification. An additional optimization led to the discovery of DS-1971a. In preclinical studies, DS-1971a demonstrated highly potent selective in vitro profile with robust efficacy in vivo. DS-1971a exhibited a favorable toxicological profile, which enabled multiple-dose studies of up to 600 mg bid or 400 mg tid (1200 mg/day) administered for 14 days to healthy human males. DS-1971a is expected to exert potent efficacy in patients with peripheral neuropathic pain, with a favorable safety profile.

Learn More >

Antioxidant modulation of sirtuin 3 during acute inflammatory pain: The ROS control.

Oxidative stress induced post-translational protein modifications are associated with the development of inflammatory hypersensitivities. At least 90% of cellular reactive oxygen species (ROS) are produced in the mitochondria, where the mitochondrial antioxidant, manganese superoxide dismutase (MnSOD), is located. MnSOD's ability to reduce ROS is enhanced by the mitochondrial NAD-dependent deacetylase sirtuin (SIRT3). SIRT3 can reduce ROS levels by deacetylating MnSOD and enhancing its ability to neutralize ROS or by enhancing the transcription of MnSOD and other oxidative stress-responsive genes. SIRT3 can be post-translationally modified through carbonylation which results in loss of activity. The contribution of post-translational SIRT3 modifications in central sensitization is largely unexplored. Our results reveal that SIRT3 carbonylation contributes to spinal MnSOD inactivation during carrageenan-induced thermal hyperalgesia in rats. Moreover, inhibiting ROS with natural and synthetic antioxidants, prevented SIRT3 carbonylation, restored the enzymatic activity of MnSOD, and blocked the development of thermal hyperalgesia. These results suggest that therapeutic strategies aimed at inhibiting post-translational modifications of SIRT3 may provide beneficial outcomes in pain states where ROS have been documented to play an important role in the development of central sensitization.

Learn More >

Behavioral, Biochemical and Electrophysiological Changes in Spared Nerve Injury Model of Neuropathic Pain.

Neuropathic pain is a pathological condition induced by a lesion or disease affecting the somatosensory system, with symptoms like allodynia and hyperalgesia. It has a multifaceted pathogenesis as it implicates several molecular signaling pathways involving peripheral and central nervous systems. Affective and cognitive dysfunctions have been reported as comorbidities of neuropathic pain states, supporting the notion that pain and mood disorders share some common pathogenetic mechanisms. The understanding of these pathophysiological mechanisms requires the development of animal models mimicking, as far as possible, clinical neuropathic pain symptoms. Among them, the Spared Nerve Injury (SNI) model has been largely characterized in terms of behavioral and functional alterations. This model is associated with changes in neuronal firing activity at spinal and supraspinal levels, and induces late neuropsychiatric disorders (such as anxious-like and depressive-like behaviors, and cognitive impairments) comparable to an advanced phase of neuropathy. The goal of this review is to summarize current findings in preclinical research, employing the SNI model as a tool for identifying pathophysiological mechanisms of neuropathic pain and testing pharmacological agent.

Learn More >

Search