I am a
Home I AM A Search Login

Accepted

Share this

Role of Peripheral Immune Cells for Development and Recovery of Chronic Pain.

Chronic neuropathic pain (CNP) is caused by a lesion or disease of the somatosensory nervous system. It affects ~8% of the general population and negatively impacts a person's level of functioning and quality of life. Its resistance to available pain therapies makes CNP a major unmet medical need. Immune cells have been shown to play a role for development, maintenance and recovery of CNP and therefore are attractive targets for novel pain therapies. In particular, in neuropathic mice and humans, microglia are activated in the dorsal horn and peripheral immune cells infiltrate the nervous system to promote chronic neuroinflammation and contribute to the initiation and progression of CNP. Importantly, immunity not only controls pain development and maintenance, but is also essential for pain resolution. In particular, regulatory T cells, a subpopulation of T lymphocytes with immune regulatory function, and macrophages were shown to be important contributors to pain recovery. In this review we summarize the interactions of the peripheral immune system with the nervous system and outline their contribution to the development and recovery of pain.

Learn More >

Abnormal neuroinflammation in fibromyalgia and CRPS using [11C]-(R)-PK11195 PET.

Fibromyalgia (FM) and complex regional pain syndrome (CRPS) share many pathological mechanisms related to chronic pain and neuroinflammation, which may contribute to the multifactorial pathological mechanisms in both FM and CRPS. The aim of this study was to assess neuroinflammation in FM patients compared with that in patients with CRPS and healthy controls.

Learn More >

Beyond bones: The relevance of variants of connective tissue (hypermobility) to fibromyalgia, ME/CFS and controversies surrounding diagnostic classification: an observational study.

Fibromyalgia and myalgic encephalomyelitis / chronic fatigue syndrome (ME/CFS) are poorly understood conditions with overlapping symptoms, fuelling debate as to whether they are manifestations of the same spectrum or separate entities. Both are associated with hypermobility, but this remains significantly undiagnosed, despite impact on quality of life.

Learn More >

Ictal and interictal brain activation in episodic migraine: Neural basis for extent of allodynia.

In some patients, migraine attacks are associated with symptoms of allodynia which can be localized (cephalic) or generalized (extracephalic). Using functional neuroimaging and cutaneous thermal stimulation, we aimed to investigate the differences in brain activation of patients with episodic migraine (n = 19) based on their allodynic status defined by changes between ictal and interictal pain tolerance threshold for each subject at the time of imaging. In this prospective imaging study, differences were found in brain activity between the ictal and interictal visits in the brainstem/pons, thalamus, insula, cerebellum and cingulate cortex. Significant differences were also observed in the pattern of activation along the trigeminal pathway to noxious heat stimuli in no allodynia vs. generalized allodynia in the thalamus and the trigeminal nucleus but there were no activation differences in the trigeminal ganglion. The functional magnetic resonance imaging (fMRI) findings provide direct evidence for the view that in migraine patients who are allodynic during the ictal phase of their attacks, the spinal trigeminal nucleus and posterior thalamus become hyper-responsive (sensitized)-to the extent that they mediate cephalic and extracephalic allodynia, respectively. In addition, descending analgesic systems seem as "switched off" in generalized allodynia.

Learn More >

L-bupivacaine Inhibition of Nociceptive Transmission in Rat Peripheral and Dorsal Horn Neurons.

Although the widely used single L-enantiomers of local anesthetics have less toxic effects on the cardiovascular and central nervous systems, the mechanisms mediating their antinociceptive actions are not well understood. The authors hypothesized that significant differences in the ion channel blocking abilities of the enantiomers of bupivacaine would be identified.

Learn More >

Migraine: A Review on Its History, Global Epidemiology, Risk Factors, and Comorbidities.

Migraine affects more than one billion individuals each year across the world, and is one of the most common neurologic disorders, with a high prevalence and morbidity, especially among young adults and females. Migraine is associated with a wide range of comorbidities, which range from stress and sleep disturbances to suicide. The complex and largely unclear mechanisms of migraine development have resulted in the proposal of various social and biological risk factors, such as hormonal imbalances, genetic and epigenetic influences, as well as cardiovascular, neurological, and autoimmune diseases. This review presents a comprehensive review of the most up-to-date literature on the epidemiology, and risk factors, as well as highlighting the gaps in our knowledge.

Learn More >

Ion Channels in Anesthesia.

Ion channels play a pivotal role in anesthesia, including general and regional anesthesia. Two main classes of general anesthetics (GAs) are inhalational anesthetics, such as isoflurane, sevoflurane, and nitrous oxide; injectable anesthetics, such as propofol, etomidate, and ketamine. Besides hypnotic agents, muscle relaxants for immobility and opioids for analgesia are needed to achieve balanced anesthesia. Although our understanding of anesthesia is far from complete, recent studies have revealed the molecular interactions between anesthetic drugs and ion channels, particularly, the ligand-gated ion channels (LGICs). Ionotropic GABA receptors (GABARs), the main mediators of the inhibitory signals in the central nervous system (CNS), are the key to hypnosis by general anesthetics. Ionotropic cholinergic receptors (nAChRs), expressed at the neuromuscular junction and the nervous system, are the molecular targets of muscle relaxants. GABARs and nAChRs belong to the same family of pentameric LGICs. With a completely different architecture, ionotropic glutamate receptors (iGluRs) carry the excitatory signals in the CNS and are targeted by inhalational anesthetics and ketamine. Another distinct family of ion channels, two-pore-domain K (K2P) channels, can be activated by inhalational anesthetics and cause neuron hyperpolarization. In this chapter, we will discuss the recent advance in understanding the molecular mechanisms underlying anesthesia through the molecular structures of these ion channels.

Learn More >

Nuclear Factor κB-COX2 Pathway Activation in Non-myelinating Schwann Cells Is Necessary for the Maintenance of Neuropathic Pain .

Chronic neuropathic pain leads to long-term changes in the sensitivity of both peripheral and central nociceptive neurons. Glial fibrillary acidic protein (GFAP)-positive glial cells are closely associated with the nociceptive neurons including astrocytes in the central nervous system (CNS), satellite glial cells (SGCs) in the sensory ganglia, and non-myelinating Schwann cells (NMSCs) in the peripheral nerves. Central and peripheral GFAP-positive cells are involved in the maintenance of chronic pain through a host of inflammatory cytokines, many of which are under control of the transcription factor nuclear factor κB (NFκB) and the enzyme cyclooxygenase 2 (COX2). To test the hypothesis that inhibiting GFAP-positive glial signaling alleviates chronic pain, we used (1) a conditional knockout (cKO) mouse expressing Cre recombinase under the hGFAP promoter and a floxed COX2 gene to inactivate the COX2 gene specifically in GFAP-positive cells; and (2) a tet-Off tetracycline transactivator system to suppress NFκB activation in GFAP-positive cells. We found that neuropathic pain behavior following spared nerve injury (SNI) significantly decreased in COX2 cKO mice as well as in mice with decreased glial NFκB signaling. Additionally, experiments were performed to determine whether central or peripheral glial NFκB signaling contributes to the maintenance of chronic pain behavior following nerve injury. Oxytetracycline (Oxy), a blood-brain barrier impermeable analog of doxycycline was employed to restrict transgene expression to CNS glia only, leaving peripheral glial signaling intact. Signaling inactivation in central GFAP-positive glia alone failed to exhibit the same analgesic effects as previously observed in animals with both central and peripheral glial signaling inhibition. These data suggest that the NFκB-COX2 signaling pathway in NMSCs is necessary for the maintenance of neuropathic pain .

Learn More >

Editorial: The Role of Neuroinflammation in Chronic Pain Development and Maintenance.

Learn More >

Genome-Wide Association Study of 2,093 Cases With Idiopathic Polyneuropathy and 445,256 Controls Identifies First Susceptibility Loci.

About one third of patients with chronic polyneuropathy have no obvious underlying etiology and are classified as having idiopathic polyneuropathy. The lack of knowledge about pathomechanisms and predisposing factors limits the development of effective prevention and treatment for these patients. We report the first genome-wide association study (GWAS) of idiopathic polyneuropathy. Cases with idiopathic polyneuropathy and healthy controls were identified by linkage to hospital records. We performed genome-wide association studies using genetic data from two large population-based health studies, the Trøndelag Health Study (HUNT, 1,147 cases and 62,204 controls) and UK Biobank (UKB, 946 cases and 383,052 controls). In a two-stage analysis design, we first treated HUNT as a discovery cohort and UK Biobank as a replication cohort. Secondly, we combined the two studies in a meta-analysis. Downstream analyses included genetic correlation to other traits and diseases. We specifically examined previously reported risk loci, and genes known to cause hereditary polyneuropathy. No replicable risk loci were identified in the discovery-replication stage, in line with the limited predicted power of this approach. When combined in a meta-analysis, two independent loci reached statistical significance (rs7294354 in -value 4.51 × 10) and (rs147738081 near -value 4.75 × 10). Idiopathic polyneuropathy genetically correlated with several anthropometric measures, most pronounced for height, and with several pain-related traits. In this first GWAS of idiopathic polyneuropathy we identify two risk-loci that indicate possible pathogenetic mechanisms. Future collaborative efforts are needed to replicate and expand on these findings.

Learn More >

Search