I am a
Home I AM A Search Login

Accepted

Share this

The impact of Covid-19-related distress on general health, oral behaviour, psychosocial features, disability and pain intensity in a cohort of Italian patients with temporomandibular disorders.

This study aimed to understand the impact of COVID-19 distress on psychological status, features of central sensitization and facial pain severity in people with temporomandibular disorders (TMDs). In this prospective cohort study, 45 adults (19 chronic, 26 acute/subacute TMD) were recruited prior to the COVID-19 outbreak. Baseline assessment took place before the outbreak while a follow-up was performed immediately after the lockdown period. Multiple variables were investigated including age, gender, perceived life quality, sleep quality, anxiety and depression, coping strategies, central sensitization, pain intensity, pain-related disability and oral behaviour. COVID Stress Scales (CSS) were applied at follow-up to measure the extent of COVID-related distress. CSS were significantly higher in those with chronic TMDs compared to those with acute/subacute TMDs (p<0.05). In people with chronic TMD, the variation in anxiety and depression from baseline to follow-up was significantly correlated with scores on the CSS (r = 0.72; p = 0.002). Variations of the central sensitization inventory (r = 0.57; p = 0.020) and graded chronic pain scale (r = 0.59; p = 0.017) were significantly correlated with scores on the CSS. These initial findings indicate that people with chronic TMD were more susceptible to COVID-19 distress with deterioration of psychological status, worsening features of central sensitization and increased chronic facial pain severity. These findings reinforce the role of stress as a possible amplifier of central sensitization, anxiety, depression, chronic pain and pain-related disability in people with TMDs. Trial Registration: ClinicalTrials.gov ID: NCT03990662.

Learn More >

Mind-Body Interventions for Depressive Symptoms in Chronic Pain: A Systematic Review of Meta-Analyses.

Psychological comorbidities in chronic pain (CP) are common and contribute to adverse health outcomes and poor quality of life. Evidence-based guidance for the management of depressive symptoms in CP is limited, particularly for mind-body interventions.

Learn More >

Characterization of Vixotrigine, a Broad-Spectrum Voltage-Gated Sodium Channel Blocker.

Voltage-gated sodium channels (Navs) are promising targets for analgesic and antiepileptic therapies. Although specificity between Nav subtypes may be desirable to target specific neural types, such as nociceptors in pain, many broadly acting Nav inhibitors are clinically beneficial in neuropathic pain and epilepsy. Here, we present the first systematic characterization of vixotrigine, a Nav blocker. Using recombinant systems, we find that vixotrigine potency is enhanced in a voltage- and use-dependent manner, consistent with a state-dependent block of Navs. Furthermore, we find that vixotrigine potently inhibits sodium currents produced by both peripheral and central nervous system Nav subtypes, with use-dependent IC values between 1.76 and 5.12 μM. Compared with carbamazepine, vixotrigine shows higher potency and more profound state-dependent inhibition but a similar broad spectrum of action distinct from Nav1.7- and Nav1.8-specific blockers. We find that vixotrigine rapidly inhibits Navs and prolongs recovery from the fast-inactivated state. In native rodent dorsal root ganglion sodium channels, we find that vixotrigine shifts steady-state inactivation curves. Based on these results, we conclude that vixotrigine is a broad-spectrum, state-dependent Nav blocker. SIGNIFICANCE STATEMENT: Vixotrigine blocks both peripheral and central voltage-gated sodium channel subtypes. Neurophysiological approaches in recombinant systems and sensory neurons suggest this block is state-dependent.

Learn More >

Methodology and applicability of the human contact burn injury model: A systematic review.

The contact burn injury model is an experimental contact thermode-based physiological pain model primarily applied in research of drug efficacy in humans. The employment of the contact burn injury model across studies has been inconsistent regarding essential methodological variables, challenging the validity of the model. This systematic review analyzes methodologies, outcomes, and research applications of the contact burn injury model. Based on these results, we propose an improved contact burn injury testing paradigm. A literature search was conducted (15-JUL-2020) using PubMed, EMBASE, Web of Science, and Google Scholar. Sixty-four studies were included. The contact burn injury model induced consistent levels of primary and secondary hyperalgesia. However, the analyses revealed variations in the methodology of the contact burn injury heating paradigm and the post-burn application of test stimuli. The contact burn injury model had limited testing sensitivity in demonstrating analgesic efficacy. There was a weak correlation between experimental and clinical pain intensity variables. The data analysis was limited by the methodological heterogenicity of the different studies and a high risk of bias across the studies. In conclusion, although the contact burn injury model provides robust hyperalgesia, it has limited efficacy in testing analgesic drug response. Recommendations for future use of the model are being provided, but further research is needed to improve the sensitivity of the contact burn injury method. The protocol for this review has been published in PROSPERO (ID: CRD42019133734).

Learn More >

Osteoarthritis Progression: Mitigation and Rehabilitation Strategies.

Osteoarthritis is the most common form of arthritis and is a substantial burden for patients with the disease. Currently, there is no cure for osteoarthritis, but many emerging therapies have been developed to aid in the mitigation of disease progression. When osteoarthritis reaches the end-stage of disease many patients undergo total joint arthroplasty to improve quality of life, yet some experience persistent pain and mobility limitations for extended periods following surgery. This review highlights recent therapeutic advancements in osteoarthritis treatment consisting of pharmacologics, nutraceuticals, biologics, and exercise while emphasizing the current state of post-arthroplasty rehabilitation.

Learn More >

G Protein-Coupled Receptors in Osteoarthritis.

Osteoarthritis (OA) is the most common chronic joint disease characterized, for which there are no available therapies being able to modify the progression of OA and prevent long-term disability. Critical roles of G-protein coupled receptors (GPCRs) have been established in OA cartilage degeneration, subchondral bone sclerosis and chronic pain. In this review, we describe the pathophysiological processes targeted by GPCRs in OA, along with related preclinical model and/or clinical trial data. We review examples of GPCRs which may offer attractive therapeutic strategies for OA, including receptors for cannabinoids, hormones, prostaglandins, fatty acids, adenosines, chemokines, and discuss the main challenges for developing these therapies.

Learn More >

Cilostazol Ameliorates Peripheral Neuropathic Pain in Streptozotocin-Induced Type I Diabetic Rats.

Cilostazol is an antiplatelet agent with vasodilating, endothelial function restoration, and anti-inflammatory effects. This study aims to investigate the efficacy of oral cilostazol for preventing the development of diabetic peripheral neuropathy (DPN). Ninety adult male Sprague-Dawley rats were divided into five groups: 1) naïve (control); 2) diabetic (DM); 3) DM receiving 10 mg/kg cilostazol (cilo-10); 4) DM receiving 30 mg/kg cilostazol (cilo-30); and 5) DM receiving 100 mg/kg cilostazol (cilo-100). Hindpaw responses to thermal and mechanical stimuli were measured. Activation of microglia and astrocytes in the spinal dorsal horn (SDH) and expression of NaVs in the dorsal root ganglia (DRG) were examined with Western blots and immunofluorescence. DM rats displayed decreased withdrawal thresholds to mechanical stimuli (mechanical allodynia) and blunted responses to thermal stimuli. In addition, the expression of microglia increased, but astrocytes were reduced in the SDH. Upregulation of Nav -1.1, 1.2, -1.3, -1.6, and -1.7 and downregulation of Nav-1.8 were observed in the DRG. The DM rats receiving cilostazol all returned DM-induced decrease in withdrawal threshold to mechanical stimuli and attenuated neuropathic pain. Additionally, all cilostazol treatments suppressed the level of activated microglial cells and ameliorated the DM-induced decline in astrocyte expression levels in the SDH. However, only the rats treated with cilo-100 demonstrated significant improvements to the aberrant NaV expression in the DRG. Oral cilostazol can blunt the responses of mechanical allodynia and has the potential to treat diabetic neuropathy by attenuating NaV and glial cell dysregulation.

Learn More >

Low-Dose Radiotherapy Leads to a Systemic Anti-Inflammatory Shift in the Pre-Clinical K/BxN Serum Transfer Model and Reduces Osteoarthritic Pain in Patients.

Osteoarthritis (OA) is the leading degenerative joint disease in the western world and leads, if left untreated, to a progressive deterioration of joint functionality, ultimately reducing quality of life. Recent data has shown, that especially OA of the ankle and foot are among the most frequently affected regions. Current research in OA points towards a complex involvement of various cell and tissue types, often accompanied by inflammation. Low-dose radiotherapy (LDRT) is widely used for the treatment of degenerative and inflammatory diseases. While the reported analgesic effects are well known, the underlying molecular mechanisms are only poorly understood. We therefore correlated a clinical approach, looking at pain reduction in 196 patients treated with LDRT with a pre-clinical approach, utilizing the K/BxN serum transfer mouse model using flow cytometry and multiplex ELISA for analysis. While an improvement of symptoms in the majority of patients was found, patients suffering from symptoms within the tarsi transversa show a significantly lower level of improvement. Further, a significant impact of therapy success was detected depending on whether only one or both feet were affected. Further, patients of younger age showed a significantly better outcome than older ones while needing fewer treatment series. When looking on a cellular level within the mouse model, a systemic alteration of immune cells namely a shift from CD8+ to CD4+ T cells and reduced numbers of DCs was observed. A general reduction of inflammatory cytokines was detected, with significant alterations in IL-4 and IL-17 levels, all of which could potentially be responsible for the highly effective clinical improvement in patients. Taken together our data indicate that LDRT can be regarded as a highly effective treatment option for patients suffering from OA of the foot and ankle, in terms of analgesic effects, especially in younger patients. Furthermore, the observed effects are mediated by an interplay of cellular and soluble immune factors, as observed in the K/BxN serum transfer model. With this interdisciplinary approach we aim to encourage the usage of LDRT as an additive treatment strategy not only as a last resort, but also earlier in the course of disease.

Learn More >

Investigating the Causal Relationship Between Physical Activity and Chronic Back Pain: A Bidirectional Two-Sample Mendelian Randomization Study.

Recent observational studies have reported a negative association between physical activity and chronic back pain (CBP), but the causality of the association remains unknown. We introduce bidirectional Mendelian randomization (MR) to assess potential causal inference between physical activity and CBP. This two-sample MR used independent genetic variants associated with physical activity and CBP as genetic instruments from large genome-wide association studies (GWASs). The effects of both directions (physical activity to CBP and CBP to physical activity) were examined. Inverse variance-weighted meta-analysis and alternate methods (weighted median and MR-Egger) were used to combine the MR estimates of the genetic instruments. Multiple sensitivity analyses were conducted to examine the robustness of the results. The MR set parallel GWAS cohorts, among which, those involved in the primary analysis were comprised of 337,234 participants for physical activity and 158,025 participants (29,531 cases) for CBP. No evidence of a causal relationship was found in the direction of physical activity to CBP [odds ratio (OR), 0.98; 95% CI, 0.85-1.13; = 0.81]. In contrast, a negative causal relationship in the direction of CBP to physical activity was detected ( = -0.07; 95% CI, -0.12 to -0.01; = 0.02), implying a reduction in moderate-vigorous physical activity (approximately 146 MET-minutes/week) for participants with CBP relative to controls. The negative relationship between physical activity and CBP is probably derived from the reduced physical activity of patients experiencing CBP rather than the protective effect of physical activity on CBP.

Learn More >

AMPK as a Potential Therapeutic Target for Intervertebral Disc Degeneration.

As the principal reason for low back pain, intervertebral disc degeneration (IDD) affects the health of people around the world regardless of race or region. Degenerative discs display a series of characteristic pathological changes, including cell apoptosis, senescence, remodeling of extracellular matrix, oxidative stress and inflammatory local microenvironment. As a serine/threonine-protein kinase in eukaryocytes, AMP-activated protein kinase (AMPK) is involved in various cellular processes through the modulation of cell metabolism and energy balance. Recent studies have shown the abnormal activity of AMPK in degenerative disc cells. Besides, AMPK regulates multiple crucial biological behaviors in IDD. In this review, we summarize the pathophysiologic changes of IDD and activation process of AMPK. We also attempt to generalize the role of AMPK in the pathogenesis of IDD. Moreover, therapies targeting AMPK in alleviating IDD are analyzed, for better insight into the potential of AMPK as a therapeutic target.

Learn More >

Search