I am a
Home I AM A Search Login

Accepted

Share this

Hyperconnection and hyperperfusion of overlapping brain regions in patients with menstrual-related migraine: a multimodal neuroimaging study.

Menstrual-related migraine (MRM) results in moderate to severe intensity headaches accompanied by physical and emotional disability over time in women. Neuroimaging methodologies have advanced our understanding of migraine; however, the neural mechanisms of MRM are not clearly understood.

Learn More >

Presynaptic Inhibition of Pain and Touch in the Spinal Cord: From Receptors to Circuits.

Sensory primary afferent fibers, conveying touch, pain, itch, and proprioception, synapse onto spinal cord dorsal horn neurons. Primary afferent central terminals express a wide variety of receptors that modulate glutamate and peptide release. Regulation of the amount and timing of neurotransmitter release critically affects the integration of postsynaptic responses and the coding of sensory information. The role of GABA (γ-aminobutyric acid) receptors expressed on afferent central terminals is particularly important in sensory processing, both in physiological conditions and in sensitized states induced by chronic pain. During the last decade, techniques of opto- and chemogenetic stimulation and neuronal selective labeling have provided interesting insights on this topic. This review focused on the recent advances about the modulatory effects of presynaptic GABAergic receptors in spinal cord dorsal horn and the neural circuits involved in these mechanisms.

Learn More >

Functional Coupling of Slack Channels and P2X3 Receptors Contributes to Neuropathic Pain Processing.

The sodium-activated potassium channel Slack (K1.1, Slo2.2, or Kcnt1) is highly expressed in populations of sensory neurons, where it mediates the sodium-activated potassium current (I) and modulates neuronal activity. Previous studies suggest that Slack is involved in the processing of neuropathic pain. However, mechanisms underlying the regulation of Slack activity in this context are poorly understood. Using whole-cell patch-clamp recordings we found that Slack-mediated I in sensory neurons of mice is reduced after peripheral nerve injury, thereby contributing to neuropathic pain hypersensitivity. Interestingly, Slack is closely associated with ATP-sensitive P2X3 receptors in a population of sensory neurons. In vitro experiments revealed that Slack-mediated I may be bidirectionally modulated in response to P2X3 activation. Moreover, mice lacking Slack show altered nocifensive responses to P2X3 stimulation. Our study identifies P2X3/Slack signaling as a mechanism contributing to hypersensitivity after peripheral nerve injury and proposes a potential novel strategy for treatment of neuropathic pain.

Learn More >

Novel curcumin analog (Cis-Trans Curcumin) as ligand to adenosine receptors A and A: potential for therapeutics.

All four of the adenosine receptor (AR) subtypes mediate pain and have been targeted by pharmacologists to generate new therapeutics for chronic pain. The vanilloid phytochemicals, which include curcumin, capsaicin, and gingerol, have been shown to alleviate pain. However, there is little to no literature on the interaction of vanilloid phytochemicals with ARs. In this study, photochemical methods were used to generate a novel isomer of curcumin (cis-trans curcumin or CTCUR), and the interactions of both curcumin and CTCUR with the two G-linked AR subtypes were studied. Competitive binding assays, docking analysis, and confocal fluorescence microscopy were performed to measure binding affinity; cell survival assays were used to measure toxicity; and cAMP assays were performed to measure receptor activation. Competitive binding results indicated that CTCUR binds to both AR A and AR A with K values of 5 µM and 7 µM, respectively, which is consistent with our docking results. Fluorescence microscopy data also shows binding for A and A. Cell survival results show that CTCUR and CUR are nontoxic at the tested concentrations in these cell lines. Overall, our results suggest that vanilloid phytochemicals may be slightly modified to increase interaction with G-ARs, and thereby can be further explored to provide a novel class of non-opioid antinociceptives.

Learn More >

Cannabidiol Use for Fibromyalgia: Prevalence of Use and Perceptions of Effectiveness in a Large Online Survey.

Cannabidiol (CBD) is widely advertised as helpful for chronic pain management but research is limited. Using a cross-sectional, anonymous survey, we examined patterns of naturalistic CBD use among individuals with fibromyalgia (FM) and other chronic pain conditions. Our objective was to better understand rates of CBD use, reasons for use and discontinuation, communication with healthcare professionals about CBD, and perceptions of CBD effectiveness and safety among people with FM. After excluding incomplete surveys, our study population consisted of N = 2701 participants with fibromyalgia, primarily in the United States. Overall, 38.1% reported never using CBD, 29.4% reported past CBD use, and 32.4% reported current CBD use. Past-year cannabis use was strongly associated with past or current CBD use. Those using CBD typically did so due to inadequate symptom relief, while those not using CBD typically cited safety concerns as their reason for not using CBD. Two-thirds of participants disclosed CBD use to their physician, although only 33% asked for physician advice on using CBD. Participants used CBD for numerous FM-related symptoms (most commonly pain), and generally reported slight to much improvement across symptom domains. Around half of participants reported side effects, which were typically minor. Our findings are limited by selection bias and our cross-sectional design, which prevents causal associations. In conclusion, CBD use is common among individuals with FM and many individuals using CBD report improvements across numerous FM-related symptoms. Our findings highlight the need for additional rigorous studies to better understand CBD's potential for FM management. Perspective: This article indicates that that CBD use is common among people with fibromyalgia, and the results suggest that many derive benefit from using CBD across multiple symptoms domains. Clinicians should discuss CBD use with fibromyalgia patients, and future studies are needed to rigorously assess CBD's therapeutic value for fibromyalgia symptoms.

Learn More >

Electrical stimulation of the posterior insula induces mechanical analgesia in a rodent model of neuropathic pain by modulating GABAergic signaling and activity in the pain circuitry.

The insula has emerged as a critical target for electrical stimulation since it influences pathological pain states. We investigated the effects of repetitive electrical stimulation of the insular cortex (ESI) on mechanical nociception, and general locomotor activity in rats subjected to chronic constriction injury (CCI) of the sciatic nerve. We also studied neuroplastic changes in central pain areas and the involvement of GABAergic signaling on ESI effects. CCI rats had electrodes implanted in the left agranular posterior insular cortex (pIC), and mechanical sensitivity was evaluated before and after one or five daily consecutive ESIs (15 min each, 60 Hz, 210 μs, 1 V). Five ESIs (repetitive ESI) induced sustained mechanical antinociception from the first to the last behavioral assessment without interfering with locomotor activity. A marked increase in Fos immunoreactivity in pIC and a decrease in the anterior and mid-cingulate cortex, periaqueductal gray and hippocampus were noticed after five ESIs. The intrathecal administration of the GABA receptor antagonist bicuculline methiodide reversed the stimulation-induced antinociception after five ESIs. ESI increased GAD65 levels in pIC but did not interfere with GABA, glutamate or glycine levels. No changes in GFAP immunoreactivity were found in this work. Altogether, the results indicate the efficacy of repetitive ESI for the treatment of experimental neuropathic pain and suggest a potential influence of pIC in regulating pain pathways partially through modulating GABAergic signaling.

Learn More >

Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6, OPRM1, and COMT genotype and select opioid therapy.

Opioids are mainly used to treat both acute and chronic pain. Several opioids are metabolized to some extent by CYP2D6 (codeine, tramadol, hydrocodone, oxycodone and methadone). Polymorphisms in CYP2D6 have been studied for an association with the clinical effect and safety of these drugs. Other genes which have been studied for their association with opioid clinical effect or adverse events include OPRM1 (mu receptor) and COMT (catechol-O-methyltransferase). This guideline updates and expands the 2014 Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 genotype and codeine therapy and includes a summation of the evidence describing the impact of CYP2D6, OPRM1 and COMT on opioid analgesia and adverse events. We provide therapeutic recommendations for the use of CYP2D6 genotype results for prescribing codeine and tramadol and describe the limited and/or weak data for CYP2D6 and hydrocodone, oxycodone and methadone and for OPRM1 and COMT for clinical use.

Learn More >

PKCε associates with the Kv3.4 channel to promote its expression in a kinase activity-dependent manner.

The voltage-gated potassium channel Kv3.4 is a crucial regulator of nociceptive signaling in the dorsal root ganglion (DRG) and the dorsal horn of the spinal cord. Moreover, Kv3.4 dysfunction has been linked to neuropathic pain. Although kinases and phosphatases can directly modulate Kv3.4 gating, the signaling mechanisms regulating the expression and stability of the Kv3.4 protein are generally unknown. We explored a potential role of PKCε and found an unexpected interaction that has a positive effect on Kv3.4 expression. Co-immunoprecipitation studies revealed a physical association between PKCε and Kv3.4 in both heterologous cells and rat DRG neurons. Furthermore, in contrast to the wild-type and constitutively active forms of PKCε, expression of a catalytically inactive form of the enzyme inhibits Kv3.4 expression and membrane localization through a dominant negative effect. Co-expression of Kv3.4 with the wild-type, constitutively active, or catalytically inactive forms of PKCε had no significant effects on Kv3.4 gating. These results suggest that a novel physical interaction of the Kv3.4 channel with functional PKCε primarily determines its stability and localization in DRG neurons. This interaction is akin to those of previously identified accessory ion channel proteins, which could be significant in neural tissues where Kv3.4 regulates electrical signaling.

Learn More >

Virtual reality for the treatment of neuropathic pain in people with spinal cord injuries: A scoping review.

Virtual and augmented imagery are emerging technologies with potential to reduce the severity and impact of neuropathic pain in people with spinal cord injury (SCI).

Learn More >

Peripheral, Central, and Cross Sensitization in Endometriosis-Associated Pain and Comorbid Pain Syndromes.

Endometriosis-associated pain and the mechanisms responsible for its initiation and persistence are complex and difficult to treat. Endometriosis-associated pain is experienced as dysmenorrhea, cyclical pain related to organ function including dysuria, dyschezia and dyspareunia, and persistent pelvic pain. Pain symptomatology correlates poorly with the extent of macroscopic disease. In addition to the local effects of disease, endometriosis-associated pain develops as a product of peripheral sensitization, central sensitization and cross sensitization. Endometriosis-associated pain is further contributed to by comorbid pain conditions, such as bladder pain syndrome, irritable bowel syndrome, abdomino-pelvic myalgia and vulvodynia. This article will review endometriosis-associated pain, its mechanisms, and its comorbid pain syndromes with a view to aiding the clinician in navigating the literature and terminology of pain and pain syndromes. Limitations of our current understanding of endometriosis-associated pain will be acknowledged. Where possible, commonalities in pain mechanisms between endometriosis-associated pain and comorbid pain syndromes will be highlighted.

Learn More >

Search