I am a
Home I AM A Search Login

Accepted

Share this

The changing states of fibromyalgia in patients with axial spondyloarthritis: results from BSRBR-AS.

To identify factors associated with fibromyalgia (FM) development and recovery in patients with axial spondyloarthritis (axSpA).

Learn More >

Bimodal Imaging of Mouse Peripheral Nerves with Chlorin Tracers.

Almost 17 million Americans have a history of cancer, a number expected to reach over 22 million by 2030. Cancer patients often undergo chemotherapy in the form of antineoplastic agents such as -platin and paclitaxel. Though effective, these agents can induce debilitating side effects; the most common neurotoxic effect, chemotherapy-induced peripheral neuropathy (CIPN), can endure long after treatment ends. Despite the widespread and chronic nature of the dysfunction, no tools exist to quantitatively measure chemotherapy-induced peripheral neuropathy. Such a tool would not only benefit patients but their stratification could also save significant financial and social costs associated with neuropathic pain. In our first step toward addressing this unmet clinical need, we explored a novel dual approach to localize peripheral nerves: Cerenkov luminescence imaging (CLI) and fluorescence imaging (FI). Our approach revolves around the targeting and imaging of voltage-gated sodium channel subtype Na1.7, highly expressed in peripheral nerves from both harvested human and mouse tissues. For the first time, we show that Hsp1a, a radiolabeled Na1.7-selective peptide isolated from spec. Peru, can serve as a targeted vector for delivering a radioactive sensor to the peripheral nervous system. , we observe high signal-to-noise ratios in the sciatic nerves of animals injected with fluorescently labeled Hsp1a and radiolabeled Hsp1a. Moreover, confocal microscopy on fresh nerve tissue shows the same high ratios of fluorescence, corroborating our results. This study indicates that fluorescently labeled and radiolabeled Hsp1a tracers could be used to identify and demarcate nerves in a clinical setting.

Learn More >

A basophil-neuronal axis promotes itch.

Itch is an evolutionarily conserved sensation that facilitates expulsion of pathogens and noxious stimuli from the skin. However, in organ failure, cancer, and chronic inflammatory disorders such as atopic dermatitis (AD), itch becomes chronic, intractable, and debilitating. In addition to chronic itch, patients often experience intense acute itch exacerbations. Recent discoveries have unearthed the neuroimmune circuitry of itch, leading to the development of anti-itch treatments. However, mechanisms underlying acute itch exacerbations remain overlooked. Herein, we identify that a large proportion of patients with AD harbor allergen-specific immunoglobulin E (IgE) and exhibit a propensity for acute itch flares. In mice, while allergen-provoked acute itch is mediated by the mast cell-histamine axis in steady state, AD-associated inflammation renders this pathway dispensable. Instead, a previously unrecognized basophil-leukotriene (LT) axis emerges as critical for acute itch flares. By probing fundamental itch mechanisms, our study highlights a basophil-neuronal circuit that may underlie a variety of neuroimmune processes.

Learn More >

Valproic acid mitigates spinal nerve ligation-induced neuropathic pain in rats by modulating microglial function and inhibiting neuroinflammatory response.

Spinal inflammation is a pathophysiological state of neuropathic pain (NP). The subsequent microglial activation and neuroinflammatory response are contributing factors for long-lasting behavioral hypersensitivity. Valproic acid (VPA), a histone deacetylase inhibitor, has promising anti-inflammatory and neuroprotective properties for clinical use in the treatment of neurological disorders. However, the underlying mechanisms of its effects on NP have not been determined. This study aimed to clarify the possible mechanisms by which VPA alleviates NP in rat models induced by spinal nerve ligation (SNL). Intraperitoneal injection of VPA (300 mg/kg) efficiently attenuated mechanical allodynia in rats with NP. VPA exerted anti-inflammatory effects by downregulating proinflammatory cytokines (tumor necrosis factor-α, cytokines interleukin-1β, cytokines interleukin-6; TNF-α, IL-1β, and IL-6) and upregulating anti-inflammatory cytokines (transforming growth factor-β, cytokines interleukin-10, cytokines interleukin-4; TGF-β, IL-10 and IL-4). Additionally, VPA suppressed spinal microgliosis and promoted the polarization of microglia towards the M2 phenotype to further ameliorate spinal neuroinflammation. VPA also exerted neuroprotective effects by decreasing spinal cell apoptosis. The anti-inflammatory and neuroprotective effects may have depended on changes in nuclear histone deacetylase 3 (HDAC3) expression following VPA treatment. Moreover, VPA treatment inhibited nuclear factor-κB (NF-κB) p65 nuclear expression and upregulated acetylated the signal transducer and activator of transcription 1 (STAT1). In addition, VPA suppressed SNL-induced phosphorylation of Janus Kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3). Taken together, our results demonstrate that VPA is a promising anti-inflammatory agent suitable for NP therapy that regulates microglial function and suppresses spinal neuroinflammation via the STAT1/NF-κB and JAK2/STAT3 signaling pathways.

Learn More >

Central endothelin-1 confers analgesia by triggering spinal neuronal histone deacetylase 5 (HDAC5) nuclear exclusion in peripheral neuropathic pain in mice.

The rationale of spinal administration of endothelin-1(ET-1) mediated anti-nociceptive effect has not been elucidated. ET-1 is reported to promote nuclear effluxion of histone deacetylase 5 (HDAC5) in myocytes, and spinal HDAC5 is implicated in modulation of pain processing. In this study, we aimed to investigate whether central ET-1 plays an anti-nociceptive role by facilitating spinal HDAC5 nuclear shuttling under neuropathic pain. Here, we demonstrate that upregulating spinal ET-1 attenuated the nociception induced by partial sciatic nerve ligation (pSNL) surgery and this analgesic effect mediated by ET-1 was attenuated by intrathecal injection of endothelin A receptor (ETAR) selective inhibitor (BQ123) or by blocking the exportation of nuclear HDAC5 by adeno-associated viruses targeting neuronal HDAC5 (AVV-HDAC5 S259/498A Mutant). Notably, ET-1 administration increased spinal glutamate acid decarboxylases (GAD65/67) expression via initiating HDAC5 nuclear exportation and increased the acetylation of histone 3 at lysine 9 (Acetyl-H3K9) in the promotor regions of spinal Gad1 and Gad2 genes. This was reversed by blocking ETAR function or by inhibiting the spinal neuronal nuclear exportation of HDAC5. Therefore, inducing spinal GABAergic neuronal HDAC5 nuclear exportation may be a novel therapeutic approach for managing neuropathic pain. Perspective: Neuropathic pain is intractable in a clinical setting, and epigenetic regulation is considered to contribute to this processing. Characterizing the anti-nociceptive effect of ET-1 and investigating the associated epigenetic mechanisms in animal models may lead to the development of new therapeutic strategies and targets for treating neuropathic pain.

Learn More >

Primary sensorimotor cortex is modified by a 6 week graded motor imagery training in chronic CRPS patients: a randomized trial.

Complex regional pain syndrome (CRPS) is a neuropathic pain condition that is difficult to treat. For behavioral interventions, graded motor imagery (GMI) showed relevant effects, but underlying neural substrates in patient groups have not been investigated yet. A previous study investigating differences in the representation of a left/right hand judgment task demonstrated less recruitment of subcortical structures, such as the putamen, in CRPS patients than in healthy controls. In healthy volunteers, the putamen activity increased after a hand judgment task training. In order to test for longitudinal effects of GMI training, we investigated 20 CRPS patients in a wait-list crossover design with 3 evaluation time points. Patients underwent a 6 week GMI treatment and a 6 week waiting period in a randomized group assignment and treatment groups were evaluated by a blinded rater. When compared to healthy matched controls at baseline, CRPS patients showed less functional activation in areas processing visual input, left sensorimotor cortex, and right putamen. Only GMI treatment, but not the waiting period showed an effect on movement pain, hand judgment task performance. Regression analyses revealed positive associations of movement pain with left anterior insula activation at baseline. Right intraparietal sulcus activation change during GMI was associated with a gain in performance of the hand judgment task. The design used here is reliable for investigating the functional representation of the hand judgment task in an intervention study. PERSPECTIVE: 20 chronic CRPS patients underwent a 6 week graded motor imagery (GMI) intervention in a randomized wait-list crossover design. fMRI was tested pre and post for the hand lateralization task which improved over GMI but not over WAITING. Performance gain was positively related to right parietal fMRI activation.

Learn More >

A Systematic Review into the Influence of Temperature on Fibromyalgia Pain: Meteorological Studies and Quantitative Sensory Testing.

Fibromyalgia syndrome (FMS) is a chronic widespread pain condition of unknown aetiology. The role of temperature in FMS pain has not been reviewed systematically. The goal of this study was to review the influences of temperature on pain in FMS, from meteorological and quantitative sensory testing (QST) studies. The review was registered with Prospero: ID-CRD42020167687, and followed PRISMA guidance. Databases interrogated were: MEDLINE (via OVID), EMBASE, PubMed, Web of Science, ScienceDirect, CINAHL and ProQuest (Feb'20). Exclusion criteria were: age <18, animal studies, non-English and non-controlled articles. Thirteen studies pertaining to ambient temperature and FMS pain were identified; 9 of these found no uniform relationship. Thirty-five QST studies were identified, 17 of which assessed cold pain thresholds (CPTs). All studies showed numerically reduced CPTs in patients, ranging from 10.9°C-26.3°C vs. 5.9°C-13.5°C in controls; this was statistically-significant in 14/17. Other thermal thresholds were often abnormal. We conclude that the literature provides consistent evidence for an abnormal sensitisation of FMS patients' temperature-sensation systems. Additional work is required to elucidate the factors that determine why a sub-group of patients perceive low ambient temperatures as painful, and to characterise that group. PERSPECTIVE: Patients often report increased pain with changes in ambient temperature; even disabling, extreme temperature sensitivity in winter. Understanding this phenomenon may help clinicians provide reassurance and advice to patients and may guide research into the everyday impact of such hypersensitivity, whilst directing future work into the pathophysiology of FMS.

Learn More >

The Role of Mrgprs in Pain.

Owing to their functional diversity, the Mas-related G-protein-coupled receptor (Mrgpr) family has a role in both itch and pain modulation. While primarily linked to pruritis, Mrgprs were originally characterized in small-diameter nociceptive neurons of dorsal root ganglia (DRG) and trigeminal ganglia. This review will focus on the role Mrgpr's have in pain physiology, discussing recent discoveries as well as how Mrgpr's may provide a new target for the treatment of pathological pain.

Learn More >

The Impact of Parental Migraine on Children.

This review surveys our current understanding of the impact of parental migraine on children. Understanding the impact of migraine on others in a family unit is critical to describing the full burden of migraine and to developing psychosocial supportive interventions for patients and their families.

Learn More >

Association between response to triptans and response to erenumab: real-life data.

Triptans and erenumab are both migraine-specific agents acting on the calcitonin gene-related peptide pathway. Therefore, response to triptans might be associated with response to erenumab.

Learn More >

Search