I am a
Home I AM A Search Login

Accepted

Share this

Phase 1 study to access safety, tolerability, pharmacokinetics, and pharmacodynamics of kynurenine in healthy volunteers.

The kynurenine pathway (KP) is the main path for tryptophan metabolism, and it represents a multitude of potential sites for drug discovery in neuroscience, including pain, stroke, and epilepsy. L-kynurenine (LKYN), the first active metabolite in the pathway, emerges to be a prodrug targeting glutamate receptors. The safety, tolerability, pharmacokinetics, and pharmacodynamics of LKYN in humans have not been previously investigated. In an open-label, single ascending dose study, six participants received an intravenous infusion of 50, 100, and 150 µg/kg LKYN and new six participants received an intravenous infusion of 0.3, 0.5, 1, and 5 mg/kg LKYN. To compare the pharmacological effects between species, we investigated in vivo the vascular effects of LKYN in rats. In humans, LKYN was safe and well-tolerated at all dose levels examined. After infusion, LKYN plasma concentration increased significantly over time 3.23 ± 1.12 µg/mL (after 50 µg/kg), 4.04 ± 1.1 µg/mL (after 100 µg/kg), and 5.25 ± 1.01 µg/mL (after 150 µg/kg) (p ≤ 0.001). We observed no vascular changes after infusion compared with baseline. In rats, LKYN had no effect on HR and MAP and caused no dilation of dural and pial arteries. This first-in-human study of LKYN showed that LKYN was safe and well-tolerated after intravenous infusion up to 5 mg/kg over 20 minutes. The lack of change in LKYN metabolites in plasma suggests a relatively slow metabolism of LKYN and no or little feed-back effect of LKYN on its synthesis. The therapeutic potential of LKYN in stroke and epilepsy should be explored in future studies in humans.

Learn More >

Sex-stratified genome-wide association study of multisite chronic pain in UK Biobank.

Chronic pain is highly prevalent worldwide and imparts a significant socioeconomic and public health burden. Factors influencing susceptibility to, and mechanisms of, chronic pain development, are not fully understood, but sex is thought to play a significant role, and chronic pain is more prevalent in women than in men. To investigate sex differences in chronic pain, we carried out a sex-stratified genome-wide association study of Multisite Chronic Pain (MCP), a derived chronic pain phenotype, in UK Biobank on 178,556 men and 209,093 women, as well as investigating sex-specific genetic correlations with a range of psychiatric, autoimmune and anthropometric phenotypes and the relationship between sex-specific polygenic risk scores for MCP and chronic widespread pain. We also assessed whether MCP-associated genes showed expression pattern enrichment across tissues. A total of 123 SNPs at five independent loci were significantly associated with MCP in men. In women, a total of 286 genome-wide significant SNPs at ten independent loci were discovered. Meta-analysis of sex-stratified GWAS outputs revealed a further 87 independent associated SNPs. Gene-level analyses revealed sex-specific MCP associations, with 31 genes significantly associated in females, 37 genes associated in males, and a single gene, DCC, associated in both sexes. We found evidence for sex-specific pleiotropy and risk for MCP was found to be associated with chronic widespread pain in a sex-differential manner. Male and female MCP were highly genetically correlated, but at an rg of significantly less than 1 (0.92). All 37 male MCP-associated genes and all but one of 31 female MCP-associated genes were found to be expressed in the dorsal root ganglion, and there was a degree of enrichment for expression in sex-specific tissues. Overall, the findings indicate that sex differences in chronic pain exist at the SNP, gene and transcript abundance level, and highlight possible sex-specific pleiotropy for MCP. Results support the proposition of a strong central nervous-system component to chronic pain in both sexes, additionally highlighting a potential role for the DRG and nociception.

Learn More >

Systematic Review of Autonomic Nervous System Functioning in Pediatric Chronic Pain.

Chronic pain is a common and debilitating health problem that impacts up to one third of children and adolescents. The pathophysiological mechanisms of chronic pain are complex, but considerable research links dysfunction of the autonomic nervous system (ANS) and chronic pain in adults. No review of ANS functioning has been conducted in pediatric chronic pain. We systematically reviewed studies examining ANS activity among youth with primary chronic pain conditions.

Learn More >

Three Dimensions of Association Link Migraine Symptoms and Functional Connectivity.

Learn More >

Large-scale functional ultrasound imaging of the spinal cord reveals in-depth spatiotemporal responses of spinal nociceptive circuits in both normal and inflammatory states.

Despite a century of research on the physiology/pathophysiology of the spinal cord in chronic pain condition, the properties of the spinal cord were rarely studied at the large-scale level from a neurovascular point of view. This is mostly due to the limited spatial and/or temporal resolution of the available techniques. Functional ultrasound imaging (fUS) is an emerging neuroimaging approach that allows, through the measurement of cerebral blood volume, the study of brain functional connectivity or functional activations with excellent spatial (100 μm) and temporal (1 msec) resolutions and a high sensitivity. The aim of this study was to increase our understanding of the spinal cord physiology through the study of the properties of spinal hemodynamic response to the natural or electrical stimulation of afferent fibers. Using a combination of fUS and ultrasound localization microscopy, the first step of this study was the fine description of the vascular structures in the rat spinal cord. Then, using either natural or electrical stimulations of different categories of afferent fibers (Aβ, Aδ, and C fibers), we could define the characteristics of the typical hemodynamic response of the rat spinal cord experimentally. We showed that the responses are fiber-specific, located ipsilaterally in the dorsal horn, and that they follow the somatotopy of afferent fiber entries in the dorsal horn and that the C-fiber response is an N-methyl-D-aspartate receptor-dependent mechanism. Finally, fUS imaging of the mesoscopic hemodynamic response induced by natural tactile stimulations revealed a potentiated response in inflammatory condition, suggesting an enhanced response to allodynic stimulations.

Learn More >

Oxaliplatin neuropathy: Predictive values of skin biopsy, QST and nerve conduction.

Oxaliplatin-induced peripheral neuropathy negatively affects the quality of life for patients with gastrointestinal cancers and may cause neuropathic pain. Measures of peripheral nerve structure or function, such as intraepidermal nerve fiber density (IENFD) during treatment could reduce neuropathy severity through individualized dose reduction.

Learn More >

Observations of Autonomic Variability Following Central Neuromodulation for Chronic Neuropathic Pain in Spinal Cord Injury.

Spinal cord injury (SCI) persons with chronic neuropathic pain (NP) demonstrate maladaptive autonomic profiles compared to SCI counterparts without NP (SCI - NP) or able-bodied (AB) controls. These aberrations may be secondary to maladaptive neuroplasticity in the shared circuitry of the pain neuromatrix-central autonomic network interface (PNM-CAN). In this study, we explored the proposed PNM-CAN mechanism in SCI + NP and AB cohorts following centrally-directed neuromodulation to assess if the PNM and CAN are capable of being differentially modulated.

Learn More >

Reduced MC4R signaling alters nociceptive thresholds associated with red hair.

Humans and mice with natural red hair have elevated basal pain thresholds and an increased sensitivity to opioid analgesics. We investigated the mechanisms responsible for higher nociceptive thresholds in red-haired mice resulting from a loss of melanocortin 1 receptor (MC1R) function and found that the increased thresholds are melanocyte dependent but melanin independent. MC1R loss of function decreases melanocytic proopiomelanocortin transcription and systemic melanocyte-stimulating hormone (MSH) levels in the plasma of red-haired ( ) mice. Decreased peripheral α-MSH derepresses the central opioid tone mediated by the opioid receptor OPRM1, resulting in increased nociceptive thresholds. We identified MC4R as the MSH-responsive receptor that opposes OPRM1 signaling and the periaqueductal gray area in the brainstem as a central area of opioid/melanocortin antagonism. This work highlights the physiologic role of melanocytic MC1R and circulating melanocortins in the regulation of nociception and provides a mechanistic framework for altered opioid signaling and pain sensitivity in red-haired individuals.

Learn More >

The long-term effect of complex regional pain syndrome type 1 on disability and quality of life after foot injury.

To study the long-term evolution of patients with lower-limb Complex Regional Pain Syndrome (CRPS), focusing on functional and proprioceptive aspects and quality of life. In 20 patients suffering from chronic distal lower-limb CRPS diagnosed using Budapest criteria, we assessed joint position sense and strength of the knee muscles at the CRPS and unaffected leg, functional exercise capacity, pain, CRPS severity score, quality of life and kinesiophobia. Similar assessments were performed in 20 age-matched controls. The joint position performance (at 45°) was significantly lower for the CRPS leg as compared to controls. The knee extensor strength of the CRPS leg was significantly reduced as compared to the unaffected leg (-27%) and controls (-42%). CRPS patients showed significantly reduced performance at the 6 min-walk test as compared to their age group predicted value and controls. Patients suffering from CRPS for 3.8 years in average still exhibit high pain, severity and kinesiophobia scores. Long-term deficits in strength and proprioceptive impairments are observed at the knee joint of the CRPS leg. This persistent functional disability has significant repercussions on the quality of life. We highlight the importance of including strength and proprioceptive exercises in the therapeutic approaches for CPRS patients. IMPLICATIONS FOR REHABILITATION The long-term evolution of patients suffering from lower-limb Complex Regional Pain Syndrome is associated with persistent disability, pain and impacts the quality of life. Strength, proprioceptive, functional and subjective assessments are necessary to better identify deficits. Rehabilitation should focus on the overall deficit of the affected and contralateral limb.

Learn More >

A link between gastrointestinal disorders and migraine: Insights into the gut-brain connection.

Migraine is a complex, multifaceted, and disabling headache disease that is often complicated by gastrointestinal (GI) conditions, such as gastroparesis, functional dyspepsia, and cyclic vomiting syndrome (CVS). Functional dyspepsia and CVS are part of a spectrum of disorders newly classified as disorders of gut-brain interaction (DGBI). Gastroparesis and functional dyspepsia are both associated with delayed gastric emptying, while nausea and vomiting are prominent in CVS, which are also symptoms that commonly occur with migraine attacks. Furthermore, these gastric disorders are comorbidities frequently reported by patients with migraine. While very few studies assessing GI disorders in patients with migraine have been performed, they do demonstrate a physiological link between these conditions.

Learn More >

Search