I am a
Home I AM A Search Login

Accepted

Share this

Treatments for kinesiophobia in people with chronic pain: A scoping review.

Kinesiophobia is associated with pain intensity in people suffering from chronic pain. The number of publications highlighting this relationship has increased significantly in recent years, emphasizing the importance of investigating and synthesizing research evidence on this topic. The purpose of this scoping review was to answer the following questions: (1) What types of interventions have been or are currently being studied in randomized controlled trials (RCTs) for the management of kinesiophobia in patients with chronic pain? (2) What chronic pain conditions are targeted by these interventions? (3) What assessment tools for kinesiophobia are used in these interventions? According to the studies reviewed, (1) physical exercise is the most commonly used approach for managing irrational fear of movement, (2) interventions for kinesiophobia have primarily focused on musculoskeletal pain conditions, particularly low back pain and neck pain, and (3) the Tampa Scale of Kinesiophobia is the most commonly used tool for measuring kinesiophobia. Future RCTs should consider multidisciplinary interventions that can help patients confront their irrational fear of movement while taking into account the patient's personal biological, psychological, and social experiences with pain and kinesiophobia.

Learn More >

Muscarinic receptor regulation of chronic pain-induced atrial fibrillation.

Atrial fibrillation (AF), one of the most common arrhythmias, is associated with chronic emotional disorder. Chronic pain represents a psychological instability condition related to cardiovascular diseases, but the mechanistic linkage connecting chronic pain to AF occurrence remains unknown. Wild-type C57BL/6J male mice were randomly divided into sham and chronic pain groups. Autonomic nerve remodeling was reflected by the increased atrial parasympathetic tension and muscarinic acetylcholine receptor M2 expression. AF susceptibility was assessed through transesophageal burst stimulation in combination with electrocardiogram recording and investigating AERP in Langendorff perfused hearts. Our results demonstrated the elevated protein expression of muscarinic acetylcholine receptor M2 in the atria of mice subjected to chronic pain stress. Moreover, chronic pain induced the increase of atrial PR interval, and atrial effective refractory periods as compared to the sham group, underlying the enhanced susceptibility of AF. Thus, autonomic cholinergic nerve may mediate mice AF in the setting of chronic pain.

Learn More >

Altered static functional network connectivity predicts the efficacy of non-steroidal anti-inflammatory drugs in migraineurs without aura.

Brain networks have significant implications for the understanding of migraine pathophysiology and prognosis. This study aimed to investigate whether large-scale network dysfunction in patients with migraine without aura (MwoA) could predict the efficacy of non-steroidal anti-inflammatory drugs (NSAIDs). Seventy patients with episodic MwoA and 33 healthy controls (HCs) were recruited. Patients were divided into MwoA with effective NSAIDs (M-eNSAIDs) and with ineffective NSAIDs (M-ieNSAIDs). Group-level independent component analysis and functional network connectivity (FNC) analysis were used to extract intrinsic networks and detect dysfunction among these networks. The clinical characteristics and FNC abnormalities were considered as features, and a support vector machine (SVM) model with fivefold cross-validation was applied to distinguish the subjects at an individual level. Dysfunctional connections within seven networks were observed, including default mode network (DMN), executive control network (ECN), salience network (SN), sensorimotor network (SMN), dorsal attention network (DAN), visual network (VN), and auditory network (AN). Compared with M-ieNSAIDs and HCs, patients with M-eNSAIDs displayed reduced DMN-VN and SMN-VN, and enhanced VN-AN connections. Moreover, patients with M-eNSAIDs showed increased FNC patterns within ECN, DAN, and SN, relative to HCs. Higher ECN-SN connections than HCs were revealed in patients with M-ieNSAIDs. The SVM model demonstrated that the area under the curve, sensitivity, and specificity were 0.93, 0.88, and 0.89, respectively. The widespread FNC impairment existing in the modulation of medical treatment suggested FNC disruption as a biomarker for advancing the understanding of neurophysiological mechanisms and improving the decision-making of therapeutic strategy.

Learn More >

Regulatory mechanisms of tetramethylpyrazine on central nervous system diseases: A review.

Central nervous system (CNS) diseases can lead to motor, sensory, speech, cognitive dysfunction, and sometimes even death. These diseases are recognized to cause a substantial socio-economic impact on a global scale. Tetramethylpyrazine (TMP) is one of the main active ingredients extracted from the Chinese herbal medicine DC (Chuan Xiong). Many and studies have demonstrated that TMP has a certain role in the treatment of CNS diseases through inhibiting calcium ion overload and glutamate excitotoxicity, anti-oxidative/nitrification stress, mitigating inflammatory response, anti-apoptosis, protecting the integrity of the blood-brain barrier (BBB) and facilitating synaptic plasticity. In this review, we summarize the roles and mechanisms of action of TMP on ischemic cerebrovascular disease, spinal cord injury, Parkinson's disease, Alzheimer's disease, cognitive impairments, migraine, and depression. Our review will provide new insights into the clinical applications of TMP and the development of novel therapeutics.

Learn More >

Transcriptome analysis of microRNAs, circRNAs, and mRNAs in the dorsal root ganglia of paclitaxel-induced mice with neuropathic pain.

The microtubule-stabilizing drug paclitaxel (PTX) is a chemotherapeutic agent widely prescribed for the treatment of various tumor types. The main adverse effect of PTX-mediated therapy is chemotherapy-induced peripheral neuropathy (CIPN) and neuropathic pain, which are similar to the adverse effects associated with other chemotherapeutic agents. Dorsal root ganglia (DRG) contain primary sensory neurons; any damage to these neurons or their axons may lead to neuropathic pain. To gain molecular and neurobiological insights into the peripheral sensory system under conditions of PTX-induced neuropathic pain, we used transcriptomic analysis to profile mRNA and non-coding RNA expression in the DRGs of adult male C57BL/6 mice treated using PTX. RNA sequencing and in-depth gene expression analysis were used to analyze the expression levels of 67,228 genes. We identified 372 differentially expressed genes (DEGs) in the DRGs of vehicle- and PTX-treated mice. Among the 372 DEGs, there were 8 mRNAs, 3 long non-coding RNAs (lncRNAs), 16 circular RNAs (circRNAs), and 345 microRNAs (miRNAs). Moreover, the changes in the expression levels of several miRNAs and circRNAs induced by PTX have been confirmed using the quantitative polymerase chain reaction method. In addition, we compared the expression levels of differentially expressed miRNAs and mRNA in the DRGs of mice with PTX-induced neuropathic pain against those evaluated in other models of neuropathic pain induced by other chemotherapeutic agents, nerve injury, or diabetes. There are dozens of shared differentially expressed miRNAs between PTX and diabetes, but only a few shared miRNAs between PTX and nerve injury. Meanwhile, there is no shared differentially expressed mRNA between PTX and nerve injury. In conclusion, herein, we show that treatment with PTX induced numerous changes in miRNA expression in DRGs. Comparison with other neuropathic pain models indicates that DEGs in DRGs vary greatly among different models of neuropathic pain.

Learn More >

The relationship between patients’ income and education and their access to pharmacological chronic pain management: A scoping review.

Though chronic pain is widespread, affecting about one-fifth of the world's population, its impacts are disproportionately felt across the population according to socioeconomic determinants such as education and income. These factors also influence patients' access to treatment, including pharmacological pain management.

Learn More >

Cancer cachexia: Pathophysiology and association with cancer-related pain.

Cachexia is a syndrome of unintentional body weight loss and muscle wasting occurring in 30% of all cancer patients. Patients with cancers most commonly leading to brain metastases have a risk for cachexia development between 20 and 80%. Cachexia causes severe weakness and fatigue and negatively impacts quality and length of life. The negative energy balance in cachectic patients is most often caused by a combination of increased energy expenditure and decreased energy intake. Basal metabolic rate may be elevated due to tumor secreted factors and a systemic inflammatory response leading to inefficiency in energy production pathways and increased energy demand by the tumor and host tissues. A growing body of research explores physiological and molecular mechanisms of metabolic dysregulation in cachexia. However, decreased energy intake and physical functioning also remain important contributors to cachexia pathogenesis. Pain associated with metastatic malignancy is significantly associated with inflammation, thus making inflammation a common link between cancer pain and cachexia. Pain may also influence appetite and food intake and exacerbate fatigue and functional decline, potentially contributing to cachexia severity. Cancer pain and cachexia often occur simultaneously; however, causal relationships remain to be established. Appropriate assessment and treatment of pain in advanced cancer patients may positively impact nutrition status and physical functioning, slowing the progression of cachexia and improving quality and length of life for patients.

Learn More >

The acceptability of photovoice as a method for incorporating resilience-enhancing factors into pediatric pain research.

Recurrent or chronic pain affects 11-38% of children and adolescents. Pediatric pain research typically focuses on risk factors, such as anxiety and parent functional disability, but resilience-building, protective factors also play an important role in the pain experience. New methods to incorporate resilience-enhancing factors into pain research are needed. Photovoice is a highly participatory research method, where participants take photos to address a common question, caption their photos, and discuss the meaning of the photos in a group. The main objective of this study was to determine whether photovoice is an acceptable method to young people living with chronic pain for identifying and sharing sources of joy. Another objective was to explore sources of joy. Sixteen adolescents and young adults participated, which involved meeting in a group to discuss the goal of the study, taking photographs of self-identified sources of joy over a two-week period, and meeting as a group again to discuss the photographs and participate in a focus group about the experience. Results suggest that photovoice is an acceptable method, as all participants took photographs and attended both meetings, and three themes from the focus group data suggested the participants considered photovoice to be appropriate: 1.) Relief associated with meeting peers, 2.) Potential to benefit young people living with pain, and 3.) Potential to raise awareness. Three themes emerged from the discussion of the photographs to describe sources of joy: 1.) Gratitude for everyday pleasures and accomplishments, 2.) Support from pets, and 3.) Journey of acceptance. Results add to the strengths-based literature on pediatric pain by identifying an acceptable method that could be further explored for use as an intervention to enhance protective factors such as positive affect, gratitude, and social support and to compare the experiences of different populations of youth living with pain.

Learn More >

Cannabidivarin alleviates neuroinflammation by targeting TLR4 co-receptor MD2 and improves morphine-mediated analgesia.

Toll-like receptor 4 (TLR4) is a pattern-recognition receptor (PRR) that regulates the activation of immune cells, which is a target for treating inflammation. In this study, Cannabidivarin (CBDV), an active component of Cannabis, was identified as an antagonist of TLR4. , intrinsic protein fluorescence titrations revealed that CBDV directly bound to TLR4 co-receptor myeloid differentiation protein 2 (MD2). Cellular thermal shift assay (CETSA) showed that CBDV binding decreased MD2 stability, which is consistent with simulations that CBDV binding increased the flexibility of the internal loop of MD2. Moreover, CBDV was found to restrain LPS-induced activation of TLR4 signaling axes of NF-κB and MAPKs, therefore blocking LPS-induced pro-inflammatory factors NO, IL-1β, IL-6 and TNF-α. Hot plate test showed that CBDV potentiated morphine-induced antinociception. Furthermore, CBDV attenuated morphine analgesic tolerance as measured by the formalin test by specifically inhibiting chronic morphine-induced glial activation and pro-inflammatory factors expression in the nucleus accumbent. This study confirms that MD2 is a direct binding target of CBDV for the anti-neuroinflammatory effect and implies that CBDV has great translational potential in pain management.

Learn More >

“I’m in pain and I want help”: An online survey investigating the experiences of tic-related pain and use of pain management techniques in people with tics and tic disorders.

Tic disorders (TDs) are complex neurological conditions characterized by involuntary, persistent vocalizations and motor movements called tics. Tics involve brief muscle movements and can impair many aspects of daily functioning and quality of life in patients – and their physical nature can cause pain. Understanding individuals' experiences of tic-related pain and pain management could help explore this under-researched area and identify additional support needs for this population. The aim of this study was to investigate experiences of pain and use of pain management techniques in people with tic disorders.

Learn More >

Search