I am a
Home I AM A Search Login

Accepted

Share this

Chronic pain through COVID.

To identify good practice in the community management of chronic pain, and to understand the perspective of a group of healthcare service users towards the management of chronic pain using technology during the COVID-19 pandemic.

Learn More >

(LA-1) and butyrate inhibit osteoarthritis by controlling autophagy and inflammatory cell death of chondrocytes.

Osteoarthritis (OA) reduces the quality of life as a result of the pain caused by continuous joint destruction. Inactivated (LA-1) ameliorated osteoarthritis and protected cartilage by modulating inflammation. In this study, we evaluated the mechanism by which live LA-1 ameliorated OA. To investigate the effect of live LA-1 on OA progression, we administered LA-1 into monosodium iodoacetate (MIA)-induced OA animals. The pain threshold, cartilage damage, and inflammation of the joint synovial membrane were improved by live LA-1. Furthermore, the analysis of intestinal tissues and feces in the disease model has been shown to affect the systems of the intestinal system and improve the microbiome environment. Interestingly, inflammation of the intestinal tissue was reduced, and the intestinal microbiome was altered by live LA-1. Live LA-1 administration led to an increase in the level of which is a short-chain fatty acid (SCFA) butyrate-producing bacteria. The daily supply of butyrate, a bacterial SCFA, showed a tendency to decrease necroptosis, a type of abnormal cell death, by inducing autophagy and reversing impaired autophagy by the inflammatory environment. These results suggest that OA is modulated by changes in the gut microbiome, suggesting that activation of autophagy can reduce aberrant cell death. In summary, live LA-1 or butyrate ameliorates OA progression by modulating the gut environment and autophagic flux. Our findings suggest the regulation of the gut microenvironment as a therapeutic target for OA.

Learn More >

The missing mechanistic link: Improving behavioral treatment efficacy for pediatric chronic pain.

Pediatric chronic pain is a significant global issue, with biopsychosocial factors contributing to the complexity of the condition. Studies have explored behavioral treatments for pediatric chronic pain, but these treatments have mixed efficacy for improving functional and psychological outcomes. Furthermore, the literature lacks an understanding of the biobehavioral mechanisms contributing to pediatric chronic pain treatment response. In this mini review, we focus on how neuroimaging has been used to identify biobehavioral mechanisms of different conditions and how this modality can be used in mechanistic clinical trials to identify markers of treatment response for pediatric chronic pain. We propose that mechanistic clinical trials, utilizing neuroimaging, are warranted to investigate how to optimize the efficacy of behavioral treatments for pediatric chronic pain patients across pain types and ages.

Learn More >

Chronic back pain among Brazilian adults: data from the 2019 National Health Survey.

To estimate the prevalence of chronic back pain (CBP) and its associated factors.

Learn More >

Five immune-related genes as diagnostic markers for endometriosis and their correlation with immune infiltration.

Endometriosis (EMS) is a chronic disease that can cause dysmenorrhea, chronic pelvic pain, and infertility, among other symptoms. EMS diagnosis is often delayed compared to other chronic diseases, and there are currently no accurate, easily accessible, and non-invasive diagnostic tools. Therefore, it is important to elucidate the mechanism of EMS and explore potential biomarkers and diagnostic tools for its accurate diagnosis and treatment. In the present study, we comprehensively analyzed the differential expression, immune infiltration, and interactions of EMS-related genes in three datasets. Our results identified 332 differentially expressed genes (DEGs) associated with EMS. Gene ontology analysis showed that these changes mainly focused on the positive regulation of endometrial cell proliferation, cell metabolism, and extracellular space, and EMS involved the integrin, complement activation, folic acid metabolism, interleukin, and lipid signaling pathways. The LASSO regression model was established using immune DEGs with an area under the curve of 0.783 for the internal dataset and 0.656 for the external dataset. Five genes with diagnostic value, , , , , and , were screened from M1 and M2 macrophages, activated mast cells, neutrophils, natural killer cells, follicular T helper cells, CD8, and CD4 cells. A protein-protein interaction network based on the immune DEGs was constructed, and ten hub genes with the highest scores were identified. Our results may provide a framework for the development of pathological molecular networks in EMS.

Learn More >

Electrophysiological indices of pain expectation abnormalities in fibromyalgia patients.

Fibromyalgia is a chronic pain syndrome characterized by dysfunctional processing of nociceptive stimulation. Neuroimaging studies have pointed out that pain-related network functioning seems to be altered in these patients. It is thought that this clinical symptomatology may be maintained or even strengthened because of an enhanced expectancy for painful stimuli or its forthcoming appearance. However, neural electrophysiological correlates associated with such attentional mechanisms have been scarcely explored. In the current study, expectancy processes of upcoming laser stimulation (painful and non-painful) and its further processing were explored by event-related potentials (ERPs). Nineteen fibromyalgia patients and twenty healthy control volunteers took part in the experiment. Behavioral measures (reaction times and subjective pain perception) were also collected. We manipulated the pain/no pain expectancy through an S1-S2 paradigm (cue-target). S1 (image: triangle or square) predicted the S2 appearance (laser stimulation: warmth or pinprick sensation). Laser stimuli were delivered using a CO laser device. Temporal and spatial principal component analyses were employed to define and quantify the ERP component reliability. Statistical analyses revealed the existence of an abnormal pattern of pain expectancy in patients with fibromyalgia. Specifically, our results showed attenuated amplitudes at posterior lCNV component in anticipation of painful stimulation that was not found in healthy participants. In contrast, although larger P2 amplitudes to painful compared to innocuous events were shown, patients did not show any amplitude change in this laser-evoked response as a function of pain predictive cues (as occurred in the healthy control group). Additionally, analyses of the subjective perception of pain and reaction time indicated that laser stimuli preceded by pain cues were rated as more painful than those signaling non-pain expectancy and were associated with faster responses. Differences between groups were not found. The present findings suggest the presence of dysfunction in pain expectation mechanisms in fibromyalgia that eventually may make it difficult for patients to correctly interpret signs that prevent pain symptoms. Furthermore, the abnormal pattern in pain expectancy displayed by fibromyalgia patients could result in ineffective pain coping strategies. Understanding the neural correlates of pain processing and its modulatory factors is crucial to identify treatments for chronic pain syndromes.

Learn More >

NSAIDs affect dendritic cell cytokine production.

Immunotherapy is now considered as the new pillar in treatment of cancer patients. Dendritic cells (DCs) play an essential role in stimulating anti-tumor immune responses, as they are capable of cross-presenting exogenous tumor antigens in MHCI complexes to activate naïve CD8+ T cells. Analgesics, like non-steroid anti-inflammatory drugs (NSAIDs), are frequently given to cancer patients to help relieve pain, however little is known about their impact on DC function.

Learn More >

Pharmacological treatments of fibromyalgia in adults; overview of phase IV clinical trials.

Fibromyalgia is a chronic neurological condition characterized by widespread pain. The effectiveness of current pharmacological treatments is limited. However, several medications have been approved for phase IV trials in order to evaluate them. To identify and provide details of drugs that have been tested in completed phase IV clinical trials for fibromyalgia management in adults, including the primary endpoints and treatment outcomes. This article was submitted to Neuropharmacology, a section of the journal Frontiers in Pharmacology. Publicly available and relevant phase IV trials registered at ClinicalTrials.gov were analyzed. The uses of the trialed drugs for fibromyalgia were reviewed. As of 8 August 2022, a total of 1,263 phase IV clinical trials were identified, of which 121 were related to fibromyalgia. From these, 10 clinical trials met the inclusion criteria for the current study. The drugs used in phase IV trials are milnacipran, duloxetine, pregabalin, a combination of tramadol and acetaminophen, and armodafinil. The effectiveness of the current pharmacological treatments is apparently limited. Due to its complexity and association with other functional pain syndromes, treatment options for fibromyalgia only are limited and they are designed to alleviate the symptoms rather than to alter the pathological pathway of the condition itself. Pain management specialists have numerous pharmacologic options available for the management of fibromyalgia.

Learn More >

Sound-Induced Flash Illusions Support Cortex Hyperexcitability in Fibromyalgia.

Fibromyalgia (FM) is characterized by spontaneous chronic widespread pain in combination with hyperalgesia to pressure stimuli. Sound-induced flash illusions (SIFIs) reflect cross-modal interactions between senses allowing to assess a visual cortical hoerexcitability (VCH) by evaluating the fission and fusion illusions disruption. The aims of the present study were to explore whether SIFIs are perceived differently in patients with fibromyalgia as compared to healthy controls (HCs) and how migraine affects fission and fusion illusions in fibromyalgia.

Learn More >

Acute and Chronic Pain Preclinical Models to Study the Analgesic Properties of Melatonergic Compounds.

Melatonin (MLT) has been implicated in several pathophysiological states, including pain. MLT mostly activates two G protein-coupled receptors, MT and MT. MLT displays analgesic properties in several animal paradigms of acute, inflammatory, and neuropathic pain. Although the analgesic mechanism of action of MLT is not yet completely elucidated, there is strong preclinical evidence suggesting the pharmacological potential of melatonergic compounds for treating pain. Importantly, MLT and melatonergic compounds seem to have a favorable toxicological profile than currently approved analgesic drugs. These compounds may thus deserve to be further developed as novel analgesic drugs, but this process relies on the use of appropriate and standardized experimental procedures. Therefore, in this chapter, we present the methodology to study the analgesic properties of MLT and melatonergic drugs in a preclinical model of chronic and acute pain. In addition to technical details of the surgical technique, details of anesthesia and perioperative care are also included.

Learn More >

Search