I am a
Home I AM A Search Login

Accepted

Share this

Methods and protocols for chemotherapy-induced peripheral neuropathy (CIPN) mouse models using paclitaxel.

While cancer patients may have chemotherapeutics to thank for being cured of their malignancy, they are often left to suffer a disabling neuropathy induced by that same cancer treatment. This neuropathy, known as chemotherapy-induced peripheral neuropathy, or CIPN, is one of the most debilitating survivorship concerns for patients, with many citing hallmark symptoms of hyperalgesia, allodynia, and numbness, and subsequently reducing their dose or even ceasing treatment altogether. Investigations into this interplay between the antineoplastic activity of chemotherapeutic agents and the preservation of peripheral nerve health are therefore crucial for the development of CIPN treatment and prevention methods. Responding to need, current literature is inundated with varying preclinical models of CIPN. This chapter thus seeks to provide a detailed and reliable methodology for the induction and assessment of CIPN in mice, using a preclinical model that is both reproducible and translatable to several aspects of the clinical phenotype. Specifically, this chapter lays out a model for intermittent low-dose paclitaxel induction of CIPN in C57BL/6J mice, and a testing of this induction via von Frey filament mechanical hypersensitivity assays, a mechanical hyposensitivity (numbness) assay, and a cold-thermal allodynia assay (acetone test). These protocols can easily be adjusted to fit the needs of individual CIPN experiments, as stated throughout the chapter.

Learn More >

Pain descriptors and determinants of pain sensitivity in knee osteoarthritis: a community-based cross-sectional study.

The aim was to explore pain characteristics in individuals with knee OA (KOA), to compare pain sensitivity across individuals with KOA, individuals with chronic back pain (CBP) and pain-free individuals (NP) and to examine the relationship between clinical characteristics and pain sensitivity and between pain characteristics and pain sensitivity in KOA.

Learn More >

5-HT Receptor Agonist Ameliorates Mechanical Allodynia in Neuropathic Pain via Induction of Mitochondrial Biogenesis and Suppression of Neuroinflammation.

Neuropathic pain is a devastating disease that affects millions of people worldwide. Serotonin (5-hydroxytryptamine, 5-HT) is involved in pain modulation. Several lines of evidence have indicated that 5-HT receptor agonists are potent inducers of mitochondrial biogenesis. In this study, we tested the hypothesis that 5-HT receptor agonists ameliorate mechanical allodynia in neuropathic pain via the induction of mitochondrial biogenesis and suppression of neuroinflammation. Male Sprague-Dawley rats were used to establish a neuropathic pain model via spared nerve injury (SNI). The paw withdrawal threshold (PWT) was used to evaluate mechanical allodynia. Real-time polymerase chain reaction was used to examine the mitochondrial DNA (mtDNA) copy number. Western blotting and immunofluorescence were used to examine the expression of target proteins. Our results showed that mitochondrial biogenesis was impaired in the spinal cord of rats with SNI. Moreover, activation of PGC-1α, the master regulator of mitochondrial biogenesis, attenuates established mechanical allodynia in rats with neuropathic pain. In addition, the neuronal 5-HT receptor is significantly downregulated in the spinal cord of rats with neuropathic pain. Furthermore, the selective 5-HT receptor agonist lasmiditan attenuated established mechanical allodynia in rats with neuropathic pain. Finally, lasmiditan (Las) treatment restored mitochondrial biogenesis and suppressed neuroinflammation in the spinal cord of rats with SNI. These results provide the first evidence that lasmiditan ameliorates mechanical allodynia in neuropathic pain by inducing mitochondrial biogenesis and suppressing neuroinflammation in the spinal cord. Inducers of mitochondrial biogenesis may be an encouraging therapeutic option for the management of neuropathic pain.

Learn More >

Sex Differences in Kappa Opioid Receptor Agonist Mediated Attenuation of Chemotherapy-Induced Neuropathic Pain in Mice.

Chemotherapy-induced neuropathic pain is a common side effect for cancer patients which has limited effective treatment options. Kappa opioid receptor (KOR) agonists are a promising alternative to currently available opioid drugs due to their low abuse potential. In the current study, we have investigated the effects of Salvinorin A (SalA) analogues, 16-Ethynyl SalA, 16-Bromo SalA and ethyoxymethyl ether (EOM) SalB, and in a preclinical model of paclitaxel-induced neuropathic pain in male and female C57BL/6J mice. Using an acute dose-response procedure, we showed that compared to morphine, 16-Ethynyl SalA was more potent at reducing mechanical allodynia; and SalA, 16-Ethynyl SalA, and EOM SalB were more potent at reducing cold allodynia. In the mechanical allodynia testing, U50,488 was more potent in males and SalA was more potent in females. There were no sex differences in the acute cold allodynia testing. In the chronic administration model, treatment with U50,488 (10 mg/kg) reduced the mechanical and cold allodynia responses to healthy levels over 23 days of treatment. Overall, we have shown that KOR agonists are effective in a model of chemotherapy-induced neuropathic pain, indicating that KOR agonists could be further developed to treat this debilitating condition.

Learn More >

Alpha-Calcitonin Gene Related Peptide: New Therapeutic Strategies for the Treatment and Prevention of Cardiovascular Disease and Migraine.

Alpha-calcitonin gene-related peptide (α-CGRP) is a vasodilator neuropeptide of the calcitonin gene family. Pharmacological and gene knock-out studies have established a significant role of α-CGRP in normal and pathophysiological states, particularly in cardiovascular disease and migraines. α-CGRP knock-out mice with transverse aortic constriction (TAC)-induced pressure-overload heart failure have higher mortality rates and exhibit higher levels of cardiac fibrosis, inflammation, oxidative stress, and cell death compared to the wild-type TAC-mice. However, administration of α-CGRP, either in its native- or modified-form, improves cardiac function at the pathophysiological level, and significantly protects the heart from the adverse effects of heart failure and hypertension. Similar cardioprotective effects of the peptide were demonstrated in pressure-overload heart failure mice when α-CGRP was delivered using an alginate microcapsules-based drug delivery system. In contrast to cardiovascular disease, an elevated level of α-CGRP causes migraine-related headaches, thus the use of α-CGRP antagonists that block the interaction of the peptide to its receptor are beneficial in reducing chronic and episodic migraine headaches. Currently, several α-CGRP antagonists are being used as migraine treatments or in clinical trials for migraine pain management. Overall, agonists and antagonists of α-CGRP are clinically relevant to treat and prevent cardiovascular disease and migraine pain, respectively. This review focuses on the pharmacological and therapeutic significance of α-CGRP-agonists and -antagonists in various diseases, particularly in cardiac diseases and migraine pain.

Learn More >

Meaning in Life and Pain: The Differential Effects of Coherence, Purpose, and Mattering on Pain Severity, Frequency, and the Development of Chronic Pain.

Meaning in life is consistently associated with better health outcomes across a range of mental and physical domains. However, meaning in life is a complex construct involving three distinct facets: coherence, purpose, and mattering. While these facets have been studied individually in relation to pain, they have not been assessed concurrently to parse out their potential distinct contributions to pain outcomes. We sought to identify the unique relationships of these individual facets of meaning with pain experiences and specify the components associated with pain-related resilience.

Learn More >

Multi-waveform Spinal Cord Stimulation with High Frequency Electromagnetic Coupled (HF-EMC) Powered Implanted Electrode Array and Receiver for the Treatment of Chronic Back and Leg Pain (SURF Study).

Novel externally powered spinal cord stimulation technology can be fully implanted when trialing the effectiveness of the therapy, since no percutaneous leads are needed, and the trial period lasted 30 days. Multiple tests of different stimulation modalities and parameters are possible, thus improving the chances that the therapy will lead to effective pain reduction.

Learn More >

The Neurostimulation Appropriateness Consensus Committee (NACC): Recommendations for Surgical Technique for Spinal Cord Stimulation.

The field of neurostimulation for the treatment of chronic pain is a rapidly developing area of medicine. Although neurostimulation therapies have advanced significantly as a result of technologic improvements, surgical planning, device placement, and postoperative care are of equal importance to optimize outcomes. This Neurostimulation Appropriateness Consensus Committee (NACC) project intends to provide evidence-based guidance for these often-overlooked areas of neurostimulation practice.

Learn More >

The role of basolateral amygdala orexin 1 receptors on the modulation of pain and psychosocial deficits in nitroglycerin-induced migraine model in adult male rats.

Migraine headaches have been associated with sensory hyperactivity and anomalies in social/emotional responses. The main objective of this study was to evaluate the potential involvement of orexin 1 receptors (Orx1R) within the basolateral amygdala (BLA) in the modulation of pain and psychosocial dysfunction in a nitroglycerin (NTG)-induced rat model of migraine.

Learn More >

Toward a causal model of chronic back pain: Challenges and opportunities.

Chronic low back pain (cLBP) afflicts 8. 2% of adults in the United States, and is the leading global cause of disability. Neuropsychiatric co-morbidities including anxiety, depression, and substance abuse- are common in cLBP patients. In particular, cLBP is a risk factor for opioid addiction, as more than 50% of opioid prescriptions in the United States are for cLBP. Misuse of these prescriptions is a common precursor to addiction. While associations between cLBP and neuropsychiatric disorders are well established, causal relationships for the most part are unknown. Developing effective treatments for cLBP, and associated co-morbidities, requires identifying and understanding causal relationships. Rigorous methods for causal inference, a process for quantifying causal effects from observational data, have been developed over the past 30 years. In this review we first discuss the conceptual model of cLBP that current treatments are based on, and how gaps in causal knowledge contribute to poor clinical outcomes. We then present cLBP as a "Big Data" problem and identify how advanced analytic techniques may close knowledge gaps and improve clinical outcomes. We will focus on causal discovery, which is a data-driven method that uses artificial intelligence (AI) and high dimensional datasets to identify causal structures, discussing both constraint-based (PC and Fast Causal Inference) and score-based (Fast Greedy Equivalent Search) algorithms.

Learn More >

Search