I am a
Home I AM A Search Login

Accepted

Share this

models for investigating itch.

Itch (pruritus) is a sensation that drives a desire to scratch, a behavior observed in many animals. Although generally short-lasting and not causing harm, there are several pathological conditions where chronic itch is a hallmark symptom and in which prolonged scratching can induce damage. Finding medications to counteract the sensation of chronic itch has proven difficult due to the molecular complexity that involves a multitude of triggers, receptors and signaling pathways between skin, immune and nerve cells. While much has been learned about pruritus from animal models, they have limitations that corroborate the necessity for a transition to more human disease-like models. Also, reducing animal use should be encouraged in research. However, conducting human experiments can also be ethically challenging. Thus, there is a clear need for surrogate models to be used in pre-clinical investigation of the mechanisms of itch. Most models used for itch research focus on the use of known pruritogens. For this, sensory neurons and different types of skin and/or immune cells are stimulated in 2D or 3D co-culture, and factors such as neurotransmitter or cytokine release can be measured. There are however limitations of such simplistic models. For example, not all naturally occurring cell types are present and there is also no connection to the itch-sensing organ, the central nervous system (CNS). Nevertheless, models offer a chance to investigate otherwise inaccessible specific cell-cell interactions and molecular pathways. In recent years, stem cell-based approaches and human primary cells have emerged as viable alternatives to standard cell lines or animal tissue. As models have increased in their complexity, further opportunities for more elaborated means of investigating itch have been developed. In this review, we introduce the latest concepts of itch and discuss the advantages and limitations of current models, which provide valuable contributions to pruritus research and might help to meet the unmet clinical need for more refined anti-pruritic substances.

Learn More >

Electroacupuncture relieves hyperalgesia by regulating neuronal-glial interaction and glutamate transporters of spinal dorsal horns in rats with acute incisional neck pain.

Glial cells are involved in the analgesic effect of electroacupuncture (EA) in rats with chronic neurological pain. The objective of this study was to observe the role of neuronal-glial interaction and glutamate (Glu) transporters in EA-induced acute neck pain relief in rats.

Learn More >

Learning from the past to plan for the future: A scoping review of musculoskeletal clinical research in Sweden 2010-2020.

The aims of this study are to 1) determine the scope of musculoskeletal (MSK)-related clinical research in Sweden; 2) collate the amount of first-tier funding received; 3) discuss strategies and infrastructure supporting future MSK clinical trials in Sweden.

Learn More >

The Burden of Metastatic Cancer-Induced Bone Pain: A Narrative Review.

Bone pain is one of the most common forms of pain reported by cancer patients with metastatic disease. We conducted a review of oncology literature to further understand the epidemiology of and treatment approaches for metastatic cancer-induced bone pain and the effect of treatment of painful bone metastases on the patient's quality of life. Two-thirds of patients with advanced, metastatic, or terminal cancer worldwide experience pain. Cancer pain due to bone metastases is the most common form of pain in patients with advanced disease and has been shown to significantly reduce patients' quality of life. Treatment options for cancer pain due to bone metastases include nonsteroidal anti-inflammatory drugs, palliative radiation, bisphosphonates, denosumab, and opioids. Therapies including palliative radiation and opioids have strong evidence supporting their efficacy treating cancer pain due to bone metastases; other therapies, like bisphosphonates and denosumab, do not. There is sufficient evidence that patients who experience pain relief after radiation therapy have improved quality of life; however, a substantial proportion are nonresponders. For those still requiring pain management, even with available analgesics, many patients are undertreated for cancer pain due to bone metastases, indicating an unmet need. The studies in this review were not designed to determine why cancer pain due to bone metastases was undertreated. Studies specifically addressing cancer pain due to bone metastases, rather than general cancer pain, are limited. Additional research is needed to determine patient preferences and physician attitudes regarding choice of analgesic for moderate to severe cancer pain due to bone metastases.

Learn More >

A Bayesian model for chronic pain.

The perceiving mind constructs our coherent and embodied experience of the world from noisy, ambiguous and multi-modal sensory information. In this paper, we adopt the perspective that the experience of pain may similarly be the result of a probabilistic, inferential process. Prior beliefs about pain, learned from past experiences, are combined with incoming sensory information in a Bayesian manner to give rise to pain perception. Chronic pain emerges when prior beliefs and likelihoods are biased towards inferring pain from a wide range of sensory data that would otherwise be perceived as harmless. We present a computational model of interoceptive inference and pain experience. It is based on a Bayesian graphical network which comprises a hidden layer, representing the inferred pain state; and an observable layer, representing current sensory information. Within the hidden layer, pain states are inferred from a combination of priors , transition probabilities between hidden states and likelihoods of certain observations . Using variational inference and free-energy minimization, the model is able to learn from observations over time. By systematically manipulating parameter settings, we demonstrate that the model is capable of reproducing key features of both healthy- and chronic pain experience. Drawing on mathematical concepts, we finally simulate treatment resistant chronic pain and discuss mathematically informed treatment options.

Learn More >

Selective serotonin reuptake inhibitors and inflammatory bowel disease; Beneficial or malpractice.

IBD, a chronic inflammatory disease, has been manifested as a growing health problem. No Crohn's and Colitis councils have officially ratified anti-depressants as a routine regimen for IBD patients. However, some physicians empirically prescribe them to rectify functional bowel consequences such as pain and alleviate psychiatric comorbidities. On the other side, SSRIs' prescription is accompanied by adverse effects such as sleep disturbances. Prolonged intermittent hypoxia throughout sleep disturbance such as sleep apnea provokes periodic reductions in the partial oxygen pressure gradient in the gut lumen. It promotes gut microbiota to dysbiosis, which induces intestinal inflammation. This phenomenon and evidence representing the higher amount of serotonin associated with Crohn's disease challenged our previous knowledge. Can SSRIs worsen the IBD course? Evidence answered the question with the claim on anti-inflammatory properties (central and peripheral) of SSRIs and illuminated the other substantial elements (compared to serotonin elevation) responsible for IBD pathogenesis. However, later clinical evidence was not all in favor of the benefits of SSRIs. Hence, in this review, the molecular mechanisms and clinical evidence are scrutinized and integrated to clarify the interfering molecular mechanism justifying both supporting and disproving clinical evidence. Biphasic dose-dependent serotonin behavior accompanying SSRI shifting function when used up for the long-term can be assumed as the parameters leading to IBD patients' adverse outcomes. Despite more research being needed to elucidate the effect of SSRI consumption in IBD patients, periodic prescriptions of SSRIs at monthly intervals can be recommended.

Learn More >

Exploring the relationship between bearing extrusion and postoperative persistent pain in Oxford unicompartmental knee arthroplasty: A trajectory measurement study.

The aim of the study is to explore the relationship between the extrusion of the meniscus bearing and postoperative persistent pain of Oxford unicompartmental knee arthroplasty. Patients undertaking Oxford UKA from January 2019 to June 2020 were retrospectively analyzed. Intraoperatively, the displacement and movement trajectory of the meniscus bearing was recorded by the specially designed gridding mold of the tibial component. The k-means clustering analysis was applied based on the incidence of postoperative persistent knee pain and the bearing extrusion distance. The intraoperative meniscus bearing movement trajectories were analyzed between the two groups and the patients' clinical outcomes and radiographic assessments. The k-means clustering analysis indicated that the extrusion of the bearing of 5 mm was the grouping standard. There were 27 patients with 30 knees in the extrusion group and 58 patients with 68 knees in the non-extrusion group. The proportion of optimal bearing movement trajectories in the extrusion group was significantly lower than that in the non-extrusion group ( < 0.05). Postoperative persistent knee pain occurred in six cases (6.1%), with four and two cases in the extrusion and non-extrusion groups, respectively. The incidence of postoperative persistent knee pain in the extrusion group was higher than that of the non-extrusion group ( < 0.05). Radiographic assessment showed that the continuity of the femoral and tibial components in the extrusion group was greater than that in the non-extrusion group ( < 0.05). However, there were no differences in pre- and postoperative HKAA, the varus/valgus degree of both femoral and tibial components, and the flexion/extension angles of the femoral component, and the tibial slope also showed no statistical difference ( > 0.05). For Oxford mobile-bearing UKA, the extrusion of meniscus bearing over 5 mm may increase the incidence of postoperative persistent knee pain, while the improvement of the bearing movement trajectory can effectively reduce this complication.

Learn More >

Altered brain responses to noxious dentoalveolar stimuli in high-impact temporomandibular disorder pain patients.

High-impact temporomandibular disorder (TMD) pain may involve brain mechanisms related to maladaptive central pain modulation. We investigated brain responses to stimulation of trigeminal sites not typically associated with TMD pain by applying noxious dentoalveolar pressure to high- and low-impact TMD pain cases and pain-free controls during functional magnetic resonance imaging (fMRI). Fifty female participants were recruited and assigned to one of three groups based on the Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) and Graded Chronic Pain Scale: controls (n = 17), low-impact (n = 17) and high-impact TMD (n = 16). Multimodal whole-brain MRI was acquired following the Human Connectome Project Lifespan protocol, including stimulus-evoked fMRI scans during which painful dentoalveolar pressure was applied to the buccal gingiva of participants. Group analyses were performed using non-parametric permutation tests for parcellated cortical and subcortical neuroimaging data. There were no significant between-group differences for brain activations/deactivations evoked by the noxious dentoalveolar pressure. For individual group mean activations/deactivations, a gradient in the number of parcels surviving thresholding was found according to the TMD pain grade, with the highest number seen in the high-impact group. Among the brain regions activated in chronic TMD pain groups were those previously implicated in sensory-discriminative and motivational-affective pain processing. These results suggest that dentoalveolar pressure pain evokes abnormal brain responses to sensory processing of noxious stimuli in high-impact TMD pain participants, which supports the presence of maladaptive brain plasticity in chronic TMD pain.

Learn More >

Synchronous firing of dorsal horn neurons at the origin of dorsal root reflexes in naïve and paw-inflamed mice.

Spinal interneurons located in the dorsal horn induce primary afferent depolarization (PAD) controlling the excitability of the afferent's terminals. Following inflammation, PAD may reach firing threshold contributing to maintain inflammation and pain. Our aim was to study the collective behavior of dorsal horn neurons, its relation to backfiring of primary afferents and the effects of a peripheral inflammation in this system. Experiments were performed on slices of spinal cord obtained from naïve adult mice or mice that had suffered an inflammatory pretreatment. Simultaneous recordings from groups of dorsal horn neurons and primary afferents were obtained and machine-learning methodology was used to analyze effective connectivity between them. Dorsal horn recordings showed grouping of spontaneous action potentials from different neurons in "population bursts." These occurred at irregular intervals and were formed by action potentials from all classes of neurons recorded. Compared to naïve, population bursts from treated animals concentrated more action potentials, had a faster onset and a slower decay. Population bursts were disrupted by perfusion of picrotoxin and held a strong temporal correlation with backfiring of afferents. Effective connectivity analysis allowed pinpointing specific neurons holding pre- or post-synaptic relation to the afferents. Many of these neurons had an irregular fast bursting pattern of spontaneous firing. We conclude that population bursts contain action potentials from neurons presynaptic to the afferents which are likely to control their excitability. Peripheral inflammation may enhance synchrony in these neurons, increasing the chance of triggering action potentials in primary afferents and contributing toward central sensitization.

Learn More >

Potential mechanisms of acupuncture for neuropathic pain based on somatosensory system.

Neuropathic pain, caused by a lesion or disease of the somatosensory system, is common and distressing. In view of the high human and economic burden, more effective treatment strategies were urgently needed. Acupuncture has been increasingly used as an adjuvant or complementary therapy for neuropathic pain. Although the therapeutic effects of acupuncture have been demonstrated in various high-quality randomized controlled trials, there is significant heterogeneity in the underlying mechanisms. This review aimed to summarize the potential mechanisms of acupuncture on neuropathic pain based on the somatosensory system, and guided for future both foundational and clinical studies. Here, we argued that acupuncture may have the potential to inhibit neuronal activity caused by neuropathic pain, through reducing the activation of pain-related ion channels and suppressing glial cells (including microglia and astrocytes) to release inflammatory cytokines, chemokines, amongst others. Meanwhile, acupuncture as a non-pharmacologic treatment, may have potential to activate descending pain control system increasing the level of spinal or brain 5-hydroxytryptamine (5-HT), norepinephrine (NE), and opioid peptides. And the types of endogenously opioid peptides was influenced by electroacupuncture-frequency. The cumulative evidence demonstrated that acupuncture provided an alternative or adjunctive therapy for neuropathic pain.

Learn More >

Search