I am a
Home I AM A Search Login

Accepted

Share this

Response of Astrocyte Subpopulations Following Spinal Cord Injury.

There is growing appreciation for astrocyte heterogeneity both across and within central nervous system (CNS) regions, as well as between intact and diseased states. Recent work identified multiple astrocyte subpopulations in mature brain. Interestingly, one subpopulation (Population C) was shown to possess significantly enhanced synaptogenic properties in vitro, as compared with other astrocyte subpopulations of adult cortex and spinal cord. Following spinal cord injury (SCI), damaged neurons lose synaptic connections with neuronal partners, resulting in persistent functional loss. We determined whether SCI induces an enhanced synaptomodulatory astrocyte phenotype by shifting toward a greater proportion of Population C cells and/or increasing expression of relevant synapse formation-associated genes within one or more astrocyte subpopulations. Using flow cytometry and RNAscope in situ hybridization, we found that astrocyte subpopulation distribution in the spinal cord did not change to a selectively synaptogenic phenotype following mouse cervical hemisection-type SCI. We also found that spinal cord astrocytes expressed synapse formation-associated genes to a similar degree across subpopulations, as well as in an unchanged manner between uninjured and SCI conditions. Finally, we confirmed these astrocyte subpopulations are also present in the human spinal cord in a similar distribution as mouse, suggesting possible conservation of spinal cord astrocyte heterogeneity across species.

Learn More >

Racial disparities in the cost of inpatient spinal cord stimulator surgery among patients in the 2016-2018 National Inpatient Sample.

Spinal cord stimulation is a promising therapy for patients with treatment refractory pain syndromes, and a viable alternative to chronic opioid therapy. Racial disparities are well-documented in the field of pain medicine. This study seeks to determine whether racial disparities are present in spinal cord stimulator (SCS) surgery involving inpatient hospital stays in the United States.

Learn More >

Systematic review and meta-analysis of predictors of return to work after spinal surgery for chronic low back and leg pain.

Spinal surgeries to treat chronic low back pain (CLBP) have variable success rates, and despite the significant personal and socioeconomic implications, we lack consensus for prognostic factors. This systematic review and meta-analysis evaluated the evidence for preoperative predictors of return to work (RTW) after spinal surgery for CLBP. We searched electronic databases and references (01/1984-03/2021), screened 2622 unique citations, and included 8 reports (5 low and 3 high risk-of-bias) which involved adults with ≥3 months duration of CLBP with/without leg pain undergoing first elective lumbar surgery with RTW assessed ≥3 months later. Narrative synthesis and meta-analysis where possible found that individuals less likely to RTW were older (odds ratio [OR]=0.58; 95% confidence interval [CI]: 0.46 to 0.72), not working before surgery, had longer sick leave (OR=0.95; 95% CI: 0.93 to 0.97), higher physical workload, legal representation (OR=0.61; 95% CI: 0.53 to 0.71), psychiatric comorbidities and depression (moderate quality-of-evidence, QoE), and longer CLBP duration and opioid use (low QoE), independent of potential confounders. Low quality and small number of studies limit our confidence in other associations. In conclusion, RTW after spinal surgery for CLBP likely depends on sociodemographic and affective psychological factors, and potentially also on symptom duration and opioid use. Perspective: This systematic review and meta-analysis synthesizes and evaluates existing evidence for preoperative predictors of return to work after spinal surgery for chronic low back pain. Demonstrated associations between return to work and sociodemographic, health-related, and psychological factors can inform clinical decision-making and guide further research.

Learn More >

Upregulation of RCAN1.4 in spinal dorsal horn is involved in inflammatory pain hypersensitivity.

The calcium/calmodulin-dependent protein phosphase calcineurin (CaN) regulates synaptic plasticity by controlling the phosphorylation of synaptic proteins including AMPA type glutamate receptors. The regulator of calcineurin 1 (RCAN1) is characterized as an endogenous inhibitor of CaN and its dysregulation is implicated in multiple neurological disorders. However, whether RCAN1 is engaged in nociceptive processing in the spinal dorsal horn remains unrevealed. In this study, we found that RCAN1 was predominately expressed in pain-related neurons in the superficial dorsal horn of the spinal cord. Intraplantar injection of complete Freund's adjuvant (CFA) specifically increased the total and synaptic expression of the RCAN1.4 isoform in spinal dorsal horn. The CFA-induced inflammation also caused an increased binding of RCAN1.4 to CaN. Overexpression of RCAN1.4 in spinal dorsal horn of intact mice produced both mechanical allodynia and thermal hyperalgesia, which were accompanied by increased synaptic expression and phosphorylation of GluA1 subunit. Furthermore, the siRNA-mediated knockdown of RCAN1.4 significantly attenuated the development of pain hypersensitivity, meanwhile, decreased the synaptic expression of GluA1 in mice with peripheral inflammation. These data suggested that the increased expression of RCAN1.4 contributed to the development of inflammatory pain hypersensitivity, at least in part by promoting the synaptic recruitment of GluA1-containing AMPA receptor.

Learn More >

Reversal of the disease signature in prurigo nodularis by blocking the itch cytokine.

Learn More >

Functional roles of neuromedin B and gastrin-releasing peptide in regulating itch and pain in the spinal cord of non-human primates.

Despite accumulating evidence in rodents, the functional role of neuromedin B (NMB) in regulating somatosensory systems in primate spinal cord is unknown. We aimed to compare the expression patterns of NMB and its receptor (NMBR) and the behavioral effects of intrathecal (i.t.) NMB with gastrin-releasing peptide (GRP) on itch or pain in non-human primates (NHPs). We used six adult rhesus monkeys. The mRNA or protein expressions of NMB, GRP, and their receptors were evaluated by quantitative reverse transcription polymerase chain reaction, immunohistochemistry, or in situ hybridization. We determined the behavioral effects of NMB or GRP via acute thermal nociception, capsaicin-induced thermal allodynia, and itch scratching response assays. NMB expression levels were greater than those of GRP in the dorsal root ganglia and spinal dorsal horn. Conversely, NMBR expression was significantly lower than GRP receptor (GRPR). I.t. NMB elicited only mild scratching responses, whereas GRP caused robust scratching responses. GRP- and NMB-elicited scratching responses were attenuated by GRPR (RC-3095) and NMBR (PD168368) antagonists, respectively. Moreover, i.t. NMB and GRP did not induce thermal hypersensitivity and GRPR and NMBR antagonists did not affect peripherally elicited thermal allodynia. Consistently, NMBR expression was low in both itch- and pain-responsive neurons in the spinal dorsal horn. Spinal NMB-NMBR system plays a minimal functional role in the neurotransmission of itch and pain in primates. Unlike the functional significance of the GRP-GRPR system in itch, drugs targeting the spinal NMB-NMBR system may not effectively alleviate non-NMBR-mediated itch.

Learn More >

Cannabinoid and endocannabinoid system: a promising therapeutic intervention for multiple sclerosis.

Multiple sclerosis (MS) is a chronic and complex neurodegenerative disease, distinguished by the presence of lesions in the central nervous system (CNS) due to exacerbated immunological responses that inflict oligodendrocytes and the myelin sheath of axons. In recent years, studies have focused on targeted therapeutics for MS that emphasize the role of G protein-coupled receptors (GPCRs), specifically cannabinoids receptors. Clinical studies have suggested the therapeutic potential of cannabinoids derived from Cannabis sativa in relieving pain, tremors and spasticity. Cannabinoids also appear to prevent exaggerated immune responses in CNS due to compromised blood-brain barrier. Both, endocannabinoid system (ECS) modulators and cannabinoid ligands actively promote oligodendrocyte survival by regulating signaling, migration and myelination of nerve cells. The cannabinoid receptors 1 (CB1) and 2 (CB2) of ECS are the main ones in focus for therapeutic intervention of MS. Various CB1/CB2 receptors agonists have been experimentally studied which showed anti-inflammatory properties and are considered to be effective as potential therapeutics for MS. In this review, we focused on the exacerbated immune attack on nerve cells and the role of the cannabinoids and its interaction with the ECS in CNS during MS pathology.

Learn More >

Altered activity of pain processing brain regions in association with hip osteoarthritis.

Hip osteoarthritis (OA) is characterized by chronic pain, but there remains a mismatch between symptoms and radiological findings. Recently, brain connectivity has been implicated in the modulation of chronic peripheral pain, however its association with perceived pain in hip OA is not understood. We used resting-state functional magnetic resonance imaging (fMRI) to examine functional connectivity associated with pain in hip OA patients. Thirty participants with hip OA and 10 non-OA controls were recruited. Using the visual analogue scale (VAS), pain scores were obtained before and after performing a painful hip activity. All participants underwent 3.0 T resting-state fMRI, and functional connectivity of brain regions associated with pain was determined and compared between participants, and before and after hip activity. Relative to controls, functional connectivity between the secondary somatosensory cortex and left posterior insula was increased, and functional connectivity between the bilateral posterior insula and motor cortices was significantly decreased in hip OA participants. In response to painful hip activity, functional connectivity increased between the thalamus, periaqueductal grey matter and brainstem. Functional connections between brain regions associated with pain are altered in hip OA patients, and several connections are modulated by performing painful activity. Unique lateralization of left posterior insula and linked brain functional connectivity patterns allows assessment of pain perception in hip OA providing an unbiased method to evaluate pain perception and pain modulation strategies.

Learn More >

Sex-specific role for serotonin 5-HT receptor in modulation of opioid-induced antinociception and reward in mice.

Opioids are among the most effective analgesics and the mainstay of pain management. However, concerns about safety and abuse liability have challenged their widespread use by the medical community. Opioid-sparing therapies include drugs that in combination with opioids have the ability to enhance analgesia while decreasing opioid requirement as well as their side effects. Sex differences in antinociceptive responses to opioids have received increasing attention in recent years. However, the molecular mechanisms underlying sex differences related to opioid-sparing adjuncts remain largely unexplored. Using warm water tail-withdrawal as a mouse model of acute thermal nociception, our data suggest that adjunctive administration of the serotonin 5-HT receptor (5-HTR) antagonist volinanserin dose-dependently enhanced potency of the opioid analgesic oxycodone in male, but not female, mice. This antinociceptive-like response induced by oxycodone was also augmented in 5-HTR knockout (5-HTR) male, but not female mice; an effect that was reversed by Cre-loxP-mediated selective expression of 5-HTR in dorsal root ganglion (DRG) neurons of 5-HTR littermates. Pharmacological inhibition with volinanserin or genetic deletion in 5-HTR animals potentiated the ability of oxycodone to reduce DRG excitability in male mice. Adjunctive volinanserin did not affect oxycodone-induced conditioned place preference (CPP), whereas it reduced oxycodone-induced locomotor sensitization in male and female mice. Together, these results suggest that adjunctive volinanserin augments opioid-induced antinociception, but not abuse-related behavior, through a sex-specific signaling crosstalk mechanism that requires 5-HTR expression in mouse DRG neurons. Ultimately, our results may pave the way for the clinical evaluation of volinanserin as a potential sex-specific opioid adjuvant.

Learn More >

Lasmiditan and 5-Hydroxytryptamine in the rat trigeminal system; expression, release and interactions with 5-HT receptors.

5-Hydroxytryptamine (5-HT) receptors 1B, 1D and 1F have key roles in migraine pharmacotherapy. Selective agonists targeting these receptors, such as triptans and ditans, are effective in aborting acute migraine attacks and inhibit the in vivo release of calcitonin gene-related peptide (CGRP) in human and animal models. The study aimed to examine the localization, genetic expression and functional aspects of 5- HT receptors in the trigeminal system in order to further understand the molecular sites of action of triptans (5-HT) and ditans (5-HT).

Learn More >

Search