I am a
Home I AM A Search Login

Accepted

Share this

Role of Platelets in Osteoarthritis-Updated Systematic Review and Meta-Analysis on the Role of Platelet-Rich Plasma in Osteoarthritis.

Platelets are an essential component of hemostasis, with an increasing role in host inflammatory processes in injured tissues. The reaction between receptors and vascular endothelial cells results in the recruitment of platelets in the immune response pathway. The aim of the present review is to describe the role of platelets in osteoarthritis. Platelets induce secretion of biological substances, many of which are key players in the inflammatory response in osteoarthritis. Molecules involved in cartilage degeneration, or being markers of inflammation in osteoarthritis, are cytokines, such as tumor necrosis factor α (TNFα), interleukins (IL), type II collagen, aggrecan, and metalloproteinases. Surprisingly, platelets may also be used as a treatment modality for osteoarthritis. Multiple randomized controlled trials included in our systematic review and meta-analyses prove the effectiveness of platelet-rich plasma (PRP) as a minimally invasive method of pain alleviation in osteoarthritis treatment.

Learn More >

Chronic facial inflammatory pain-induced anxiety is associated with bilateral deactivation of the rostral anterior cingulate cortex.

Patients with chronic pain, especially orofacial pain, often suffer from affective disorders, including anxiety. Previous studies largely focused on the role of the caudal anterior cingulate cortex (cACC) in affective responses to pain, long-term potentiation (LTP) in cACC being thought to mediate the interaction between anxiety and chronic pain. But recent evidence indicates that the rostral ACC (rACC), too, is implicated in processing affective pain. However, whether such processing is associated with neuronal and/or synaptic plasticity is still unknown. We addressed this issue in a chronic facial inflammatory pain model (complete Freund's adjuvant model) in rats, by combining behavior, Fos protein immunochemistry and ex vivo intracellular recordings in rACC slices prepared from these animals. Facial mechanical allodynia occurs immediately after CFA injection, peaks at post-injection day 3 and progressively recovers until post-injection days 10-11, whereas anxiety is delayed, being present at post-injection day 10, when sensory hypersensitivity is relieved, but, notably, not at post-injection day 3. Fos expression reveals that neuronal activity follows a bi-phasic time course in bilateral rACC: first enhanced at post-injection day 3, it gets strongly depressed at post-injection day 10. Ex vivo recordings from lamina V pyramidal neurons, the rACC projecting neurons, show that both their intrinsic excitability and excitatory synaptic inputs have undergone long-term depression (LTD) at post-injection day 10. Thus chronic pain processing is associated with dynamic changes in rACC activity: first enhanced and subsequently decreased, at the time of anxiety-like behavior. Chronic pain-induced anxiety might thus result from a rACC deactivation-cACC hyperactivation interplay.

Learn More >

Predictors of Pain and Disability Outcomes Following Spinal Surgery for Chronic Low Back and Radicular Pain: A Systematic Review.

Success rates of spinal surgeries to treat chronic back pain are highly variable and useable prognostic indicators are lacking. We aimed to identify and evaluate preoperative predictors of pain and disability after spinal surgery for chronic low back/leg pain.

Learn More >

Molecular Simulations and Drug Discovery of Adenosine Receptors.

G protein-coupled receptors (GPCRs) represent the largest family of human membrane proteins. Four subtypes of adenosine receptors (ARs), the AAR, AAR, AAR and AAR, each with a unique pharmacological profile and distribution within the tissues in the human body, mediate many physiological functions and serve as critical drug targets for treating numerous human diseases including cancer, neuropathic pain, cardiac ischemia, stroke and diabetes. The AAR and AAR preferentially couple to the G proteins, while the AAR and AAR prefer coupling to the G proteins. Adenosine receptors were the first subclass of GPCRs that had experimental structures determined in complex with distinct G proteins. Here, we will review recent studies in molecular simulations and computer-aided drug discovery of the adenosine receptors and also highlight their future research opportunities.

Learn More >

Pain Management with Transdermal Drug Administration: A Review.

Pain management is an urgent issue to solve with complex mechanisms. Localized acute pain requires rapid and accurate delivery of drugs with less distribution in the blood circulation while chronic pain requires controlled release of drugs with long drug retention time. The transdermal route, a promising way with high patient compliance was known for painless delivery, long drug retention time, stable blood concentration, easily controlled dosage and release rate as well as the fewer side effects. This review presents transdermal route for pain management according to the different sites of action which drugs aim to reach, and illustrates different analgesic mechanisms, dosage forms, transdermal enhancements and clinical applications. In addition, the review concludes the difference of pain types and presents the future aims of pain management, thereby providing a reference for researches focusing on percutaneous analgesia.

Learn More >

Neuro-immune communication regulating pruritus in atopic dermatitis.

Atopic dermatitis (AD) is a common, chronic-relapsing inflammatory skin disease with significant disease burden. Genetic and environmental trigger factors contribute to AD, activating two of our largest organs, the nervous and immune system. Dysregulation of neuro-immune circuits plays a key role in the pathophysiology of AD causing inflammation, pruritus, pain, and barrier dysfunction. Sensory nerves can be activated by environmental or endogenous trigger factors transmitting itch stimuli to the brain. Upon stimulation, sensory nerve endings also release neuromediators into the skin contributing again to inflammation, barrier dysfunction and itch. Additionally, dysfunctional peripheral and central neuronal structures contribute to neuroinflammation, sensitization, nerve elongation, neuropathic itch, thus chronification and therapy-resistance. Consequently, neuro-immune circuits in skin and central nervous system may be targets to treat pruritus in AD. Cytokines, chemokines, proteases, lipids, opioids, ions excite/sensitize sensory nerve endings not only induce itch but further aggravate/perpetuate inflammation, skin barrier disruption, and pruritus. Thus, targeted therapies for neuro-immune circuits as well as pathway inhibitors (e.g., kinase inhibitors) may be beneficial to control pruritus in AD either in systemic and/or topical form. Understanding neuro-immune circuits and neuronal signaling will optimize our approach to control all pathological mechanisms in AD, inflammation, barrier dysfunction and pruritus.

Learn More >

Association of opioid exposure before surgery with opioid consumption after surgery: an infographic.

Learn More >

Pain severity ratings in the 11th revision of the International Classification of Diseases: a versatile tool for rapid assessment.

An improved classification of chronic pain is included in the 11th revision of the International Classification of Diseases (ICD-11). For all diagnoses of chronic pain, an optional dimensional code for the chronic pain severity will supplement the categorical diagnoses. Pain severity combines pain intensity, pain-related interference, and pain-related distress. Each component is rated by the patient on a numerical rating scale (NRS) from 0 to 10, and subsequently translated into severity stages ('mild'/'moderate'/'severe'). The present study aimed to evaluate this severity code by comparing the ratings with established psychometric measures of pain-related interference and distress. An online survey was posted to self-help groups for chronic pain, and 595 participants (88.7% women, 59.5±13.5 years) rated each of the severity parameters (pain intensity, pain-related interference, pain-related distress) on an NRS from 0 to 10 and completed the Pain Disability Index (PDI) and the Pain Coping Questionnaire (FESV, 3 subscales). The participants reported a mean pain intensity of 6.4±1.9, mean pain-related interference of 6.7±2.1, and mean pain-related distress of 5.7±2.5. The respective NRS ratings showed substantial correlations with the PDI score (r=.65) and the FESV subscales (r=.65, r=.56, r=.37). The extension code for pain severity is a valid and efficient way of recording additional dimensional pain parameters, which can be used to monitor the course of chronic pain and its treatment. The specifier's efficiency makes it possible to use the code when a questionnaire would not be feasible due to time constraints, such as in primary care.

Learn More >

The effect of prolonged experimental neck pain on exercise-induced hypoalgesia.

Neck pain is a common musculoskeletal problem often accompanied by reduced exercise-induced hypoalgesia (EIH) or hyperalgesia compared to an asymptomatic population. This study investigated EIH in a healthy population during experimental neck pain. Forty participants were randomized into this double-blinded parallel-group study. On four separate test days (Day0, Day2, Day4, Day15), participants completed the Neck Disability Index (NDI) and scored neck pain intensity during head movements on a numerical rating scale (NRS). At the end of Day0 and Day2, Nerve Growth Factor (NGF) or isotonic saline (control) was injected into the right splenius capitis muscle. Pressure pain thresholds (PPTs) were recorded bilaterally over splenius capitis (neck), temporalis (head) and tibialis anterior (leg) muscles on all days. On Day0, Day4 and Day15, PPTs were recorded before and after a hand-bike exercise. EIH was defined as the PPT increase caused by the exercise. Compared with the control-group, the NGF-group demonstrated higher NDI scores at Day2 and Day4 (P<0.001,η2>0.557) and higher NRS scores (P<0.03,η2>0.09) along with reduced neck PPTs (P<0.01,d>0.44) at Day2(Right:95%CI[26.0,54.0];Left:95%CI[6.8,26.9]), Day4(Right:95%CI[40.5, 67.9];Left:95%CI[6.9,28.2]) and Day15(Right:95%CI[5.6,37.2];Left:95%CI[6.9,34.8]). Across days, the EIH-effect was reduced at the neck site in the NGF-group compared to the control-group (P<0.001,η2P=0.367,95%CI[-34.5,-13.7]). At the head and leg sites, the NGF-group showed reduced EIH-effect compared to the control-group (P<0.05,d>0.43) on Day4(Head:95%CI[-61.4,-22.9];Leg:95%CI[-154.7,-72.4]) and Day15(Head:95%CI[-54.3,-7.6];Leg:95%CI[-122.7,-34.4]). These results indicate that a few days of clinically comparable neck pain and hyperalgesia might have a negative impact on EIH-responses and may help explain why some neck pain patients do not experience immediate positive effects of exercise.

Learn More >

Functional connectivity modulations during offset analgesia in chronic pain patients: an fMRI study.

Patients with neuropathic pain and fibromyalgia showed reduced or absent offset analgesia (OA) response and attenuated cerebral activity in descending pain modulatory and reward systems in patients. However, neural network modifications of OA in chronic pain have not been determined. We enrolled 23 patients with various chronic pain and 17 age- and gender- matched healthy controls. All participants were given OA-related noxious thermal stimuli, including 3 repeats of offset analgesia paradigm at 46-47-46 °C and constant paradigm at 46 °C on the left volar forearm under whole-brain functional magnitude resonance imaging (fMRI). We evaluated magnitude of OA, examined OA modulated functional connectivity using psychophysiological interaction analysis and resting-state functional connectivity analysis and explored their behavioral correlations in patients compared with controls.Compared to controls, chronic pain patients showed smaller magnitude of OA (P = 0.047). OA modulated connectivity decreased between posterior cingulate cortex (PCC) and right medial prefrontal cortex (MPFC) in proportion to current chronic pain (P = 0.018); decreased between right pallidum and right thalamus, and increased between right caudate nucleus and left primary somatosensory cortex (P  < 0.05).The impaired PCC-MPFC connectivity might play an important role in dysfunction of OA and contribute to pain chronification.

Learn More >

Search