I am a
Home I AM A Search Login

Accepted

Share this

The role of glia underlying acupuncture analgesia in animal pain models, a systematic review and meta-analysis.

As a traditional Chinese therapy, acupuncture is proposed worldwide as a treatment for pain and other health problems, but the findings of acupuncture analgesia have been inconsistent due to its variable modalities of therapeutic intervention.

Learn More >

Pathophysiology of Nociception and Rare Genetic Disorders with Increased Pain Threshold or Pain Insensitivity.

Pain and nociception are different phenomena. Nociception is the result of complex activity in sensory pathways. On the other hand, pain is the effect of interactions between nociceptive processes, and cognition, emotions, as well as the social context of the individual. Alterations in the nociceptive route can have different genesis and affect the entire sensorial process. Genetic problems in nociception, clinically characterized by reduced or absent pain sensitivity, compose an important chapter within pain medicine. This chapter encompasses a wide range of very rare diseases. Several genes have been identified. These genes encode the Nav channels 1.7 and 1.9 (, and genes, respectively), and its receptor tyrosine receptor kinase A, as well as the transcription factor PRDM12, and autophagy controllers (). Monogenic disorders provoke hereditary sensory and autonomic neuropathies. Their clinical pictures are extremely variable, and a precise classification has yet to be established. Additionally, pain insensitivity is described in diverse numerical and structural chromosomal abnormalities, such as Angelman syndrome, Prader Willy syndrome, Chromosome 15q duplication syndrome, and Chromosome 4 interstitial deletion. Studying these conditions could be a practical strategy to better understand the mechanisms of nociception and investigate potential therapeutic targets against pain.

Learn More >

Managing pain and inflammation associated with musculoskeletal disease: time for a change?

Learn More >

Transgenic Mice for the Translational Study of Neuropathic Pain and Dystonia.

Murine models are fundamental in the study of clinical conditions and the development of new drugs and treatments. Transgenic technology has started to offer advantages in oncology, encompassing all research fields related to the study of painful syndromes. Knockout mice or mice overexpressing genes encoding for proteins linked to pain development and maintenance can be produced and pain models can be applied to transgenic mice to model the most disabling neurological conditions. Due to the association of movement disorders with sensitivity and pain processing, our group focused for the first time on the role of the torsinA gene GAG deletion-responsible for DYT1 dystonia-in baseline sensitivity and neuropathic responses. The aim of the present report are to review the complex network that exists between the chaperonine-like protein torsinA and the baseline sensitivity pattern-which are fundamental in neuropathic pain-and to point at its possible role in neurodegenerative diseases.

Learn More >

An analgesic peptide H-20 attenuates chronic pain via the PD-1 pathway with few adverse effects.

The lack of effective and safe analgesics for chronic pain management has been a health problem associated with people's livelihoods for many years. Analgesic peptides have recently shown significant therapeutic potential, as they are devoid of opioid-related adverse effects. Programmed cell death protein 1 (PD-1) is widely expressed in neurons. Activation of PD-1 by PD-L1 modulates neuronal excitability and evokes significant analgesic effects, making it a promising target for pain treatment. However, the research and development of small molecule analgesic peptides targeting PD-1 have not been reported. Here, we screened the peptide H-20 using high-throughput screening. The in vitro data demonstrated that H-20 binds to PD-1 with micromolar affinity, evokes Src homology 2 domain-containing tyrosine phosphatase 1 (SHP-1) phosphorylation, and diminishes nociceptive signals in dorsal root ganglion (DRG) neurons. Preemptive treatment with H-20 effectively attenuates perceived pain in naïve WT mice. Spinal H-20 administration displayed effective and longer-lasting analgesia in multiple preclinical pain models with a reduction in or absence of tolerance, abuse liability, constipation, itch, and motor coordination impairment. In summary, our findings reveal that H-20 is a promising candidate drug that ameliorates chronic pain in the clinic.

Learn More >

The Role of Neuro-Immune Interaction in Chronic Pain Conditions; Functional Somatic Syndrome, Neurogenic Inflammation, and Peripheral Neuropathy.

Functional somatic syndromes are increasingly diagnosed in chronically ill patients presenting with an array of symptoms not attributed to physical ailments. Conditions such as chronic fatigue syndrome, fibromyalgia syndrome, or irritable bowel syndrome are common disorders that belong in this broad category. Such syndromes are characterised by the presence of one or multiple chronic symptoms including widespread musculoskeletal pain, fatigue, sleep disorders, and abdominal pain, amongst other issues. Symptoms are believed to relate to a complex interaction of biological and psychosocial factors, where a definite aetiology has not been established. Theories suggest causative pathways between the immune and nervous systems of affected individuals with several risk factors identified in patients presenting with one or more functional syndromes. Risk factors including stress and childhood trauma are now recognised as important contributors to chronic pain conditions. Emotional, physical, and sexual abuse during childhood is considered a severe stressor having a high prevalence in functional somatic syndrome suffers. Such trauma permanently alters the biological stress response of the suffers leading to neuroexcitatory and other nerve issues associated with chronic pain in adults. Traumatic and chronic stress results in epigenetic changes in stress response genes, which ultimately leads to dysregulation of the hypothalamic-pituitary axis, the autonomic nervous system, and the immune system manifesting in a broad array of symptoms. Importantly, these systems are known to be dysregulated in patients suffering from functional somatic syndrome. Functional somatic syndromes are also highly prevalent co-morbidities of psychiatric conditions, mood disorders, and anxiety. Consequently, this review aims to provide insight into the role of the nervous system and immune system in chronic pain disorders associated with the musculoskeletal system, and central and peripheral nervous systems.

Learn More >

Uncovering a new route to pain therapy.

High-voltage-activated calcium channels (HVACCs) are promising targets for developing analgesics given their roles in controlling synaptic transmission, neuronal excitability and neuropeptide release in primary nociceptive neurons. Despite previous efforts in developing HVACCs inhibitors of various drug modalities, it remains undetermined whether targeting HVACCs directly by a gene therapy approach could lead to pain alleviation in vivo. To test this, Sun and colleagues adopted a post-translational ubiquitination-based knockdown method targeting HVACCs in primary sensory neurons. They showed ablation of HVACC currents in a subset of primary sensory neurons, dampened hyperexcitability of sensory neurons after nerve injury and reduced pain behavior with no apparent adverse effects [1]. The results open the possibility of targeting ion channels with ubiquitination-based knockdown as a promising gene therapy candidate for pain treatment in future clinical studies.

Learn More >

Chronic Pain in Young People With Cerebral Palsy: Activity Limitations and Coping Strategies.

To describe the effect of chronic pain on the activities of children and adolescents with cerebral palsy, to describe coping strategies, and to examine associations between effect of pain on activities, coping strategies, and level of pain.

Learn More >

The practical limits of high-quality magnetic resonance imaging for the diagnosis and classification of trigeminal neuralgia.

Neurovascular compression (NVC) has been the primary hypothesis for the underlying mechanism of classical trigeminal neuralgia (TN). However, a substantial body of literature has emerged highlighting notable exceptions to this hypothesis. The purpose of this study is to assess the reliability and diagnostic accuracy of high resolution, high contrast MRI-determined neurovascular contact for TN.

Learn More >

Spinal Cord Stimulation Paradigms and Pain Relief: A Preclinical Systematic Review on Modulation of the Central Inflammatory Response in Neuropathic Pain.

Spinal cord stimulation (SCS) is a last-resort treatment for patients with chronic neuropathic pain. The mechanism underlying SCS and pain relief is not yet fully understood. Because the inflammatory balance between pro- and anti-inflammatory molecules in the spinal nociceptive network is pivotal in the development and maintenance of neuropathic pain, the working mechanism of SCS is suggested to be related to the modulation of this balance. The aim of this systematic review is to summarize and understand the effects of different SCS paradigms on the central inflammatory balance in the spinal cord.

Learn More >

Search