I am a
Home I AM A Search Login

Accepted

Share this

Assessing the societal cost of chronic pain.

Learn More >

Soluble CCR2 gene therapy controls joint inflammation, cartilage damage, and the progression of osteoarthritis by targeting MCP-1 in a monosodium iodoacetate (MIA)-induced OA rat model.

Osteoarthritis (OA) is the most common type of degenerative arthritis and affects the entire joint, causing pain, joint inflammation, and cartilage damage. Various risk factors are implicated in causing OA, and in recent years, a lot of research and interest have been directed toward chronic low-grade inflammation in OA. Monocyte chemoattractant protein-1 (MCP-1; also called CCL2) acts through C-C chemokine receptor type 2 (CCR2) in monocytes and is a chemotactic factor of monocytes that plays an important role in the initiation of inflammation. The targeting of CCL2-CCR2 is being studied as part of various topics including the treatment of OA.

Learn More >

Effects of Opioid Prescribing Cap Laws on Opioid and Other Pain Treatments Among Persons with Chronic Pain.

Many states have adopted laws that limit the amount or duration of opioid prescriptions. These limits often focus on prescriptions for acute pain, but there may be unintended consequences for those diagnosed with chronic pain, including reduced opioid prescribing without substitution of appropriate non-opioid treatments.

Learn More >

Sensory testing might not be perfect – but it is the best biomarker for pain phenotypes we have right now.

Currently available treatments for neuropathic pain fail in roughly half of the patients – and it is impossible to predict which treatments will help patients. Stratification of neuropathic pain patients is needed, and sensory profiling has so far been the most promising approach: it has been shown to be responsive to treatment, linked to potential mechanisms, and, most importantly, predictive of treatment success. Despite a number of limitations, it is the currently most promising stratification tool and should be refined rather than disregarded.

Learn More >

Efficacy of Lasmiditan Across Patient and Migraine Characteristics in Japanese Patients with Migraine: A Secondary Analysis of the MONONOFU Trial.

This MONONOFU trial subgroup analysis evaluates the efficacy of lasmiditan across patient and migraine characteristics in Japanese patients with migraine.

Learn More >

Long-term neurologic outcomes of COVID-19.

The neurologic manifestations of acute COVID-19 are well characterized, but a comprehensive evaluation of postacute neurologic sequelae at 1 year has not been undertaken. Here we use the national healthcare databases of the US Department of Veterans Affairs to build a cohort of 154,068 individuals with COVID-19, 5,638,795 contemporary controls and 5,859,621 historical controls; we use inverse probability weighting to balance the cohorts, and estimate risks and burdens of incident neurologic disorders at 12 months following acute SARS-CoV-2 infection. Our results show that in the postacute phase of COVID-19, there was increased risk of an array of incident neurologic sequelae including ischemic and hemorrhagic stroke, cognition and memory disorders, peripheral nervous system disorders, episodic disorders (for example, migraine and seizures), extrapyramidal and movement disorders, mental health disorders, musculoskeletal disorders, sensory disorders, Guillain-Barré syndrome, and encephalitis or encephalopathy. We estimated that the hazard ratio of any neurologic sequela was 1.42 (95% confidence intervals 1.38, 1.47) and burden 70.69 (95% confidence intervals 63.54, 78.01) per 1,000 persons at 12 months. The risks and burdens were elevated even in people who did not require hospitalization during acute COVID-19. Limitations include a cohort comprising mostly White males. Taken together, our results provide evidence of increased risk of long-term neurologic disorders in people who had COVID-19.

Learn More >

A behavioral and brain imaging dataset with focus on emotion regulation of women with fibromyalgia.

Fibromyalgia is a chronic condition characterized by widespread pain, as well as numerous symptoms related to central sensitization such as: fatigue, cognitive disturbances, constipation/diarrhea and sensory hypersensitivity. Furthermore, depression and anxiety are prevalent comorbidities, accompanied by emotion processing and regulation difficulties. Although fibromyalgia physiopathology is still not fully understood, neuroimaging research methods have shown brain structural and functional alterations as well as neuroinflammation abnormalities. We believe that open access to data may help fibromyalgia research advance more. Here, we present an open dataset of 33 fibromyalgia female patients and 33 paired healthy controls recruited from a Mexican population. Dataset includes demographic, clinical, behavioural and magnetic resonance imaging (MRI) data. The MRI data consists of: structural (T1- and T2- weighted) and functional (task-based and resting state) sequences. The task was an emotion processing and regulation task based on visual stimuli. The MRI data contained in the repository are unprocessed, presented in Brain Imaging Data Structure (BIDS) format and available on the OpenNeuro platform for future analysis.

Learn More >

Activated microglia nibbling glycosaminoglycans from spinal cord perineural nets: a new mechanism for neuropathic pain.

Learn More >

Surround Inhibition Mediates Pain Relief by Low Amplitude Spinal Cord Stimulation: Modeling and Measurement.

Low-frequency (<200 Hz), subperception spinal cord stimulation (SCS) is a novel modality demonstrating therapeutic efficacy for treating chronic neuropathic pain. When stimulation parameters were carefully titrated, patients experienced rapid onset (seconds – minutes) pain relief without paresthesia, but the mechanisms of action are unknown. Using an integrated computational model and in vivo measurements in urethane-anesthetized rats, we quantified how stimulation parameters (placement, pulse width, frequency, and amplitude) influenced dorsal column (DC) axon activation and neural responses in the dorsal horn (DH). Both modeled and recorded DC axons responded with irregular spiking patterns in response to low-amplitude SCS. Maximum inhibition of DH neurons occurred at ∼80% of the predicted sensory threshold in both modeled and recorded neurons, and responses were strongly dependent on spatially targeting of stimulation, i.e., the complement of DC axons activated, and on stimulation parameters. Intrathecal administration of bicuculline shifted neural responses to low-amplitude stimulation in both the model and experiment, suggesting that analgesia is dependent on segmental GABAergic mechanisms. Our results support the hypothesis that low-frequency subperception SCS generates rapid analgesia by activating a small number of DC axons which inhibit DH neuron activity via surround inhibition.Spinal cord stimulation is an effective treatment from chronic pain, but conventional stimulation generates paresthesias, a buzzing sensation that some patients find uncomfortable. Recent studies have demonstrated substantial pain relief using low frequency spinal cord stimulation that does not generate paresthesia; however, it is unclear how this form of stimulation works. In this study, we used computational models and recordings of dorsal horn neurons and dorsal column axons to study low-frequency, low-amplitude SCS and proposed a novel mechanism of action. The mechanism of action we proposed may help design future parameter selection and drive the development of SCS as a therapy.

Learn More >

Exercise-induced hypoalgesia after aerobic versus neck-specific exercise in people with acute/subacute whiplash-associated disorders: protocol for a randomised controlled trial.

A disturbance in exercise-induced hypoalgesia (EIH) has been observed in patients with chronic whiplash-associated disorders (WAD). Yet, no studies have examined whether EIH occurs in people with acute/subacute WAD. This study will determine whether EIH occurs immediately after and 24 hours after aerobic exercise (AE) and neck-specific exercise (NSE) in people with acute/subacute WAD.

Learn More >

Search