I am a
Home I AM A Search Login

Accepted

Share this

Non-invasive diagnosis of endometriosis: immunologic and genetic markers.

Endometriosis, a benign gynecologic and chronic inflammatory disease, is defined by the presence of endometrial tissue outside the uterus characterized mainly by pelvic pain and infertility. Because endometriosis affects approximately 10% of females, it represents a significant socioeconomic burden worldwide having tremendous impact on daily quality of life. Accurate and prompt diagnosis is crucial for the management of this debilitating disorder. Unfortunately, diagnosis is typically delayed to lack of specific symptoms and readily accessible biomarkers. Although histopathologic examination remains the current gold standard, this approach is highly invasive and not applicable for early screening. Recent work has focused on the identification of reliable biomarkers including immunologic, ie, immune cells, antibodies and cytokines, as well as genetic and biochemical markers, ie, microRNAs, lncRNAs, circulating and mitochondrial nucleic acids, along with some hormones, glycoproteins and signaling molecules. Confirmatory research studies are, however, needed to more fully establish these markers in the diagnosis, progression and staging of these endometrial lesions.

Learn More >

Domino reaction of neurovascular unit in neuropathic pain after spinal cord injury.

The mechanism of neuropathic pain after spinal cord injury is complex, and the communication between neurons, glia, and blood vessels in neurovascular units significantly affects the occurrence and development of neuropathic pain. After spinal cord injury, a domino chain reaction occurs in the neuron-glia-vessel, which affects the permeability of the blood-spinal cord barrier and jointly promotes the development of neuroinflammation. This article discusses the signal transduction between neuro-glial-endothelial networks from a multidimensional point of view and reviews its role in neuropathic pain after spinal cord injury.

Learn More >

Analgesia and sedation for intratracheal intubation in the neonatal period: an integrative literature review.

to assess evidence available in the literature about the use of sedation and analgesia for intratracheal intubation of newborns.

Learn More >

Trifluoro-icaritin ameliorates spared nerve injury-induced neuropathic pain by inhibiting microglial activation through α7nAChR-mediated blockade of BDNF/TrkB/KCC2 signaling in the spinal cord of rats.

Neuropathic pain is still a serious and unsolved health problem. Activation of α7 nicotinic acetylcholine receptor (α7nAChR) is known to modulate neuropathic pain by inhibiting microglial activation and BDNF/TrkB/KCC2 signaling. We previously identified that trifluoro-icaritin (ICTF) has an attenuated effect on spared nerve injury (SNI)-induced neuropathic pain, but its potential mechanisms remain unknown. Here, the pain-related behaviors were determined by paw withdrawal threshold (PWT), CatWalk gait analysis, rotarod test, open field test and elevated plus maze test. The expression of pain-related signal molecules was evaluated by Western blot and immunofluorescence staining. The results showed that ICTF (5.0 mg/kg, i.p.) successfully relieved SNI-induced mechanical allodynia and anxiety-like behavior, we subsequently found there existed either positive or negative correlation between mechanical allodynia and gait parameters or rotating speed following ICTF treatment. Moreover, ICTF not only enhanced the expression of spinal α7nAChR, KCC2, CD206 and IL-10, but also decreased the levels of spinal BDNF, TrkB, CD11b, Iba-1, CD40 and IL-1β in SNI rats. Conversely, α7nAChR antagonist α-Bgtx (I.T.) effectively reversed the inhibitory effects of ICTF on SNI rats, resulting in a remarkable improvement of mechanical allodynia, activation of microglia. and suppression of α7nAChR-mediated BDNF/TrkB/KCC2 signaling. Additionally, exogenous BDNF (I.T.) dramatically abrogated both blockade of BDNF/TrkB/KCC2 cascade and alleviation of mechanical allodynia by ICTF treatment. Altogether, the study highlighted that ICTF could relieve SNI-induced neuropathic pain by suppressing microglial activation via α7nAChR-mediated inhibition of BDNF/TrkB/KCC2 signaling in the spinal cord, suggesting that ICTF may be served as a possible painkiller against neuropathic pain.

Learn More >

A Crosstalk between the Cannabinoid Receptors and Nociceptin Receptors in Colitis-Clinical Implications.

Inflammatory bowel diseases (IBD) refer to a group of gastrointestinal (GI) disorders with complex pathogenesis characterized by chronic intestinal inflammation with a variety of symptoms. Cannabinoid and nociceptin opioid receptors (NOPs) and their ligands are widely distributed in the GI tract. The nociceptin opioid receptor is a newly discovered member of the opioid receptor family with unique characteristics. Both cannabinoid and NOP systems exhibit antinociceptive and anti-inflammatory activity and contribute to maintaining proper motility, secretion and absorption in the GI tract. Furthermore, they influence high and low voltage calcium channels, which play a crucial role in the processing of pain, and share at least two kinases mediating their action. Among them there is NF-κB, a key factor in the regulation of inflammatory processes. Therefore, based on functional similarities between cannabinoid and nociceptin receptors and the anti-inflammatory effects exerted by their ligands, there is a high likelihood that there is an interaction between cannabinoid receptors 1 and 2 and the nociceptin receptor in colitis. In this review, we discuss potential overlaps between these two systems on a molecular and functional level in intestinal inflammation to create the basis for novel treatments of IBD.

Learn More >

Editorial for the Special Issue: “Advances in Postoperative Pain Management and Chronic Postoperative Pain”.

Acute and chronic pain are two completely distinct universes […].

Learn More >

Epigenetic Changes within the Annulus Fibrosus by DNA Methylation in Rat Intervertebral Disc Degeneration Model.

Intervertebral disc degeneration (IDD) is an age-dependent progressive spinal disease that causes chronic back or neck pain. Although aging has long been presented as the main risk factor, the exact cause is not fully known. DNA methylation is associated with chronic pain, suggesting that epigenetic modulation may ameliorate disc degeneration. We examined histological changes in the DNA methylation within the discs and their association with pain-related transient receptor potential vanilloid subtype 1 (TrpV1) expression in rats subjected to IDD. Epigenetic markers (5-hydroxymethylcytosine (5hmC), 5-methylcytosine (5Mc)), DNA methyltransferases (DNMTs), and Ten-eleven translocations (Tets) were analyzed using immunohistochemistry, real-time PCR, and DNA dot-blot following IDD. Results revealed high 5mC levels in the annulus fibrosus (AF) region within the disc after IDD and an association with TrpV1 expression. DNMT1 is mainly involved in 5mC conversion in degenerated discs. However, 5hmC levels did not differ between groups. A degenerated disc can lead to locomotor defects as assessed by ladder and tail suspension tests, no pain signals in the von Frey test, upregulated matrix metalloproteinase-3, and downregulated aggrecan levels within the disc. Thus, we found that the DNA methylation status in the AF region of the disc was mainly changed after IDD and associated with aberrant TrpV1 expression in degenerated discs.

Learn More >

Theory of Planned Behavior and Mindfulness Intentions in Chronic Low Back Pain.

Theory of planned of behavior (TPB) constructs have been linked to health behavior intentions. Intentions to try mindfulness-based stress reduction (MBSR), a first-line therapy for chronic low back pain (cLBP), have been less studied. This study aimed to identify which TPB constructs could inform strategies to improve adoption of MBSR.

Learn More >

Discovery of κ Opioid Receptor (KOR)-Selective d-Tetrapeptides with Improved Antinociceptive Effect after Peripheral Administration.

Peripherally active tetrapeptides as selective κ opioid receptor (KOR) agonists have been prepared in good overall yields and high purity following solid-phase peptide synthesis via Fmoc protection strategy. Structural modifications at the first and second position of the FF(d-Nle)R-NH () were contemplated with aromatic side chains containing d-amino acids, such as (d)-F-Phe, (d)-F-Phe, (d)-F-Phe, which led to highly selective and efficacious KOR agonists endowed with strong antinociceptive activity following intravenous (i.v.) and subcutaneous (s.c.) administration in the tail flick and formalin tests. These results suggest potential clinical applications in the treatment of neuropathic and inflammatory pain.

Learn More >

The Characteristics of Clinical Trials on Cannabis and Cannabinoids: A Review of Trials for Therapeutic or Drug Development Purposes.

Patients and healthcare practitioners are increasingly interested in using cannabis and cannabinoids to address unmet clinical needs. Although we have clinical evidence on the medical use of cannabinoids, a significant portion of the data is not based on randomized clinical trials, which are considered the gold standard in clinical research. We have reviewed the registered clinical trials on cannabis and cannabinoids for therapeutic or drug development purposes to underline the past and current attempts to generate robust clinical evidence and identify existing knowledge gaps.

Learn More >

Search