I am a
Home I AM A Search Login

Accepted

Share this

Chronic Low Back Pain Comorbidity Count and its Impact on Exacerbating Opioid and Non-Opioid Prescribing Behavior.

To determine the characteristics of chronic low back pain (CLBP) comorbidity and its impact on opioid and non-opioid treatments among Chicagoland patients with CLBP.

Learn More >

Television-viewing time and bodily pain in Australian adults with and without type 2 diabetes: 12-year prospective relationships.

Bodily pain is a common presentation in several chronic diseases, yet the influence of sedentary behaviour, common in ageing adults, is unclear. Television-viewing (TV) time is a ubiquitous leisure-time sedentary behaviour, with a potential contribution to the development of bodily pain. We examined bodily pain trajectories and the longitudinal relationships of TV time with the bodily pain severity; and further, the potential moderation of the relationships by type 2 diabetes (T2D) status.

Learn More >

Debate: Are cluster headache and migraine distinct headache disorders?

Cluster headache and migraine are regarded as distinct primary headaches. While cluster headache and migraine differ in multiple aspects such as gender-related and headache specific features (e.g., attack duration and frequency), both show clinical similarities in trigger factors (e.g., alcohol) and treatment response (e.g., triptans). Here, we review the similarities and differences in anatomy and pathophysiology that underlie cluster headache and migraine, discuss whether cluster headache and migraine should indeed be considered as two distinct primary headaches, and propose recommendations for future studies. Video recording of the debate held at the 1st International Conference on Advances in Migraine Sciences (ICAMS 2022, Copenhagen, Denmark) is available at https://www.youtube.com/watch?v=uUimmnDVTTE .

Learn More >

Chronic pain in patients with hemophilia: Influence of kinesiophobia and catastrophizing thoughts.

Learn More >

Kappa opioid receptor agonists produce sexually dimorphic and prolactin-dependent hyperalgesic priming.

Repeated stress produces hyperalgesic priming in preclinical models, but underlying mechanisms remain uncertain. As stress engages kappa opioid receptors (KORs), we hypothesized that repeated administration of KOR agonists might mimic, in part, stress-induced hyperalgesic priming. The potential contribution of circulating prolactin (PRL) and dysregulation of the expression of PRL receptor (PRLR) isoforms in sensory neurons after KOR agonist administration was also investigated. Mice received 3 daily doses of U-69593 or nalfurafine as a "first-hit" stimulus followed by assessment of periorbital tactile allodynia. Sixteen days after the first KOR agonist administration, animals received a subthreshold dose of inhalational umbellulone, a TRPA1 agonist, as the second-hit stimulus and periorbital allodynia was assessed. Cabergoline, a dopamine D2 receptor agonist, was used to inhibit circulating PRL in additional cohorts. Prolactin receptor isoforms were quantified in the V1 region of the trigeminal ganglion after repeated doses of U-69593. In both sexes, KOR agonists increased circulating PRL and produced allodynia that resolved within 14 days. Hyperalgesic priming, revealed by umbellulone-induced allodynia in animals previously treated with the KOR agonists, also occurred in both sexes. However, repeated U-69593 downregulated the PRLR long isoform in trigeminal neurons only in female mice. Umbellulone-induced allodynia was prevented by cabergoline co-treatment during priming with KOR agonists in female, but not male, mice. Hyperalgesic priming therefore occurs in both sexes after either biased or nonbiased KOR agonists. However, a PRL/PRLR-dependence is observed only in female nociceptors possibly contributing to pain in stress-related pain disorders in females.

Learn More >

The “STOP Pain” Questionnaire: using the Plan-Do-Study-Act model to implement a patient-family preferences-informed questionnaire into a pediatric transitional pain clinic.

Patient engagement is an important tool for quality improvement (QI) and optimizing the uptake of research findings. The Plan-Do-Study-Act (PDSA) model is a QI tool that encourages ongoing evaluation of clinical care, thus improving various aspects of patient care. Ascertaining pediatric patient priorities for a pain questionnaire in the post-acute, or transitional pain, setting is important to guide clinical care since active engagement with the population of interest can optimize uptake. We used the PDSA model to adapt a chronic pain questionnaire for the pediatric transitional pain setting to reflect pediatric patient and parent/guardian preferences and to form an example of how the PDSA model can be used to improve clinical care through patient engagement.

Learn More >

Contribution of pain to subsequent cognitive decline or dementia: A systematic review and meta-analysis of cohort studies.

Dementia is an urgent public health problem worldwide, and the determination of the contribution of pain to cognitive decline or dementia is significant for the prevention of dementia.

Learn More >

Single-cell and microarray chip analysis revealed the underlying pathogenesis of ulcerative colitis and validated model genes in diagnosis and drug response.

The morbidity rate of ulcerative colitis (UC) in the world is increasing year by year, recurrent episodes of diarrhea, mucopurulent and bloody stools, and abdominal pain are the main symptoms, reducing the quality of life of the patient and affecting the productivity of the society. In this study, we sought to develop robust diagnostic biomarkers for UC, to uncover potential targets for anti-TNF-ɑ drugs, and to investigate their associated pathway mechanisms. We collected single-cell expression profile data from 9 UC or healthy samples and performed cell annotation and cell communication analysis. Revealing the possible pathogenesis of ulcerative colitis by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) analysis. Based on the disease-related modules obtained from weighted correlation network analysis (WGCNA) analysis, we used Lasso regression analysis and random forest algorithm to identify the genes with the greatest impact on disease (EPB41L3, HSD17B3, NDRG1, PDIA5, TRPV3) and further validated the diagnostic value of the model genes by various means. To further explore the relationship and mechanism between model genes and drug sensitivity, we collected gene expression profiles of 185 UC patients before receiving anti-tumor necrosis factor drugs, and we performed functional analysis based on the results of differential analysis between NR tissues and R tissues, and used single-sample GSEA (ssGSEA) and CIBERSORT algorithms to explore the important role of immune microenvironment on drug sensitivity. The results suggest that our model is not only helpful in aiding diagnosis, but also has implications for predicting drug efficacy; in addition, model genes may influence drug sensitivity by affecting immune cells. We suggest that this study has developed a diagnostic model with higher specificity and sensitivity, and also provides suggestions for clinical administration and drug efficacy prediction.

Learn More >

Effects of Different Opioid Drugs on Oxidative Status and Proteasome Activity in SH-SY5Y Cells.

Opioids are the most effective drugs used for the management of moderate to severe pain; however, their chronic use is often associated with numerous adverse effects. Some results indicate the involvement of oxidative stress as well as of proteasome function in the development of some opioid-related side effects including analgesic tolerance, opioid-induced hyperalgesia (OIH) and dependence. Based on the evidence, this study investigated the impact of morphine, buprenorphine or tapentadol on intracellular reactive oxygen species levels (ROS), superoxide dismutase activity/gene expression, as well as β2 and β5 subunit proteasome activity/biosynthesis in SH-SY5Y cells. Results showed that tested opioids differently altered ROS production and SOD activity/biosynthesis. Indeed, the increase in ROS production and the reduction in SOD function elicited by morphine were not shared by the other opioids. Moreover, tested drugs produced distinct changes in β2(trypsin-like) and β5(chymotrypsin-like) proteasome activity and biosynthesis. In fact, while prolonged morphine exposure significantly increased the proteolytic activity of both subunits and β5 mRNA levels, buprenorphine and tapentadol either reduced or did not alter these parameters. These results, showing different actions of the selected opioid drugs on the investigated parameters, suggest that a low µ receptor intrinsic efficacy could be related to a smaller oxidative stress and proteasome activation and could be useful to shed more light on the role of the investigated cellular processes in the occurrence of these opioid drug side effects.

Learn More >

Investigating the shared genetic architecture and causal relationship between pain and neuropsychiatric disorders.

Pain often occurs in parallel with neuropsychiatric disorders. However, the underlying mechanisms and potential causality have not been well studied. We collected the genome-wide association study (GWAS) summary statistics of 26 common pain and neuropsychiatric disorders with sample size ranging from 17,310 to 482,730 in European population. The genetic correlation between pair of pain and neuropsychiatric disorders, as well as the relevant cell types were investigated by linkage disequilibrium (LD) score regression analyses. Then, transcriptome-wide association study (TWAS) was applied to identify the potential shared genes by integrating the gene expression information and GWAS. In addition, Mendelian randomization (MR) analyses were conducted to infer the potential causality between pain and neuropsychiatric disorders. Among the 169 pairwise pain and neuropsychiatric disorders, 55 pairs showed positive correlations (median r = 0.43) and 9 pairs showed negative correlations (median r =  -0.31). Using MR analyses, 26 likely causal associations were identified, including that neuroticism and insomnia were risk factors for most of short-term pain, and multisite chronic pain was risk factor for neuroticism, insomnia, major depressive disorder and attention deficit/hyperactivity disorder, and vice versa. The signals of pain and neuropsychiatric disorders tended to be enriched in the functional regions of cell types from central nervous system (CNS). A total of 19 genes shared in at least one pain and neuropsychiatric disorder pair were identified by TWAS, including AMT, NCOA6, and UNC45A, which involved in glycine degradation, insulin secretion, and cell proliferation, respectively. Our findings provided the evidence of shared genetic structure, causality and potential shared pathogenic mechanisms between pain and neuropsychiatric disorders, and enhanced our understanding of the comorbidities of pain and neuropsychiatric disorders.

Learn More >

Search