I am a
Home I AM A Search Login

Accepted

Share this

A Pilot Investigation into Targeted Muscle Reinnervation for Complex Regional Pain Syndrome, Type II.

Complex regional pain syndrome (CRPS) is a debilitating condition, characterized by severe pain with vascular, motor, or trophic changes. Varied presentations make this a diagnostic and therapeutic challenge. There is a lack of high-quality evidence demonstrating efficacy for most existing therapies, particularly with surgical intervention for type II CRPS (CRPS-II). Targeted muscle reinnervation (TMR) is a surgical technique to transfer the terminal end of a divided nerve to a recipient motor nerve, shown to limit phantom limb pain, residual limb pain, and postamputation neuroma pain.

Learn More >

A novel Atlantic salmon (Salmo salar) bone collagen peptide delays osteoarthritis development by inhibiting cartilage matrix degradation and anti-inflammatory.

Nowadays, the biological activity of collagen peptides has been revealed, but the effect of Atlantic salmon (Salmo salar) bone-derived collagen peptide (CPs) on osteoarthritis remains unclear. In this study, CPs was identified as a small molecular weight peptide rich in Gly-X-Y structure. Meanwhile, interleukin-1β (IL-1β)-induced hypertrophic chondrocytes and partial medial meniscectomy (pMMx) surgery model in rats were performed. In IL-1β stimulated chondrocytes, CPs significantly increased the type-II collagen content, reduced the type-X collagen abundance and chondrocytes apoptosis. Meanwhile, CPs reversed the increased expression of matrix metalloproteinase, metalloproteinase with thrombospondin motifs and RUNX family transcription factor 2 in chondrocytes induced by IL-1β. In vivo, CPs increased pain tolerance of rats and without organ toxicity at 1.6 g/kg.bw. CPs significantly decreased the levels of COMP and Helix-II in serum. Furthermore, a significant decrease of IL-1β in synovial fluid and cartilage tissue were observed by CPs intervention. From Micro-CT, CPs (0.8 g/kg.bw) significantly decreased Tb.sp and SMI value. Meanwhile, the expression of tumor necrosis factor and interleukin-6 were reduced by CPs administration both in vitro and in vivo. Together, CPs showed potential to be a novel and safe dietary supplement for helping anti-inflammatory and cartilage regeneration, ultimately hindering osteoarthritis development. However, the clear mechanism of CPs's positive effect on osteoarthritis needs to be further explored.

Learn More >

Long-term analysis of chronic pain associated with lower extremity injuries.

The main objective of this study is to examine chronic pain and limping in relation to lower extremity and pelvic fracture location in addition to fracture combinations if multiple fractures are present on the same leg that have not been previously reported. We hypothesize that fracture pattern and location of lower extremity and pelvis fractures of multiple injured patients influence their long-term pain outcome.

Learn More >

Radiofrequency techniques for chronic pain.

Learn More >

Kratom alkaloid mitragynine: Inhibition of chemotherapy-induced peripheral neuropathy in mice is dependent on sex and active adrenergic and opioid receptors.

Mitragynine (MG) is an alkaloid found in (kratom) that is used as an herbal remedy for pain relief and opioid withdrawal. MG acts at μ-opioid and α-adrenergic receptors in vitro but the physiological relevance of this activity in the context of neuropathic pain remains unknown. The purpose of the present study was to characterize the effects of MG in a mouse model of chemotherapy-induced peripheral neuropathy (CIPN), and to investigate the potential impact of sex on MG's therapeutic efficacy. Inhibition of oxaliplatin-induced mechanical hypersensitivity was measured following intraperitoneal administration of MG. Both male and female C57BL/6J mice were used to characterize potential sex-differences in MG's therapeutic efficacy. Pharmacological mechanisms of MG were characterized through pretreatment with the opioid and adrenergic antagonists naltrexone, prazosin, yohimbine, and propranolol (1, 2.5, 5 mg/kg). Oxaliplatin produced significant mechanical allodynia of equal magnitude in both male and females, which was dose-dependently attenuated by repeated MG exposure. MG was more potent in males vs females, and the highest dose of MG (10 mg/kg) exhibited greater anti-allodynic efficacy in males. Mechanistically, activity at µ-opioid, α- and α-adrenergic receptors, but not β-adrenergic receptors contributed to the effects of MG against oxaliplatin-induced mechanical hypersensitivity. Repeated MG exposure significantly attenuated oxaliplatin-induced mechanical hypersensitivity with greater potency and efficacy in males, which has crucial implications in the context of individualized pain management. The opioid and adrenergic components of MG indicate that it shares pharmacological properties with clinical neuropathic pain treatments.

Learn More >

Electroacupuncture attenuates spared nerve injury-induced neuropathic pain possibly by promoting the progression of AMPK/mTOR-mediated autophagy in spinal microglia.

Neuropathic pain (NP) is a syndrome that arises from central or peripheral nerve injury, which manifests primarily as hyperalgesia, spontaneous pain, and allodynia. The recent trend has exhibited a shift towards the development of therapies for managing NP. Activation of autophagy is involved in the function of the glial cells, which may be implicated further to attenuate pain.

Learn More >

Rizatriptan-Loaded Oral Fast Dissolving Films: Design and Characterizations.

Rizatriptan (RZT) is an efficient anti-migraine drug which belongs to the class of selective 5 HT (1B/1D) serotonin receptor agonists. Nevertheless, RZT elicits several adverse effects and RZT nasal sprays have a limited half-life, requiring repeated doses that could cause patient noncompliance or harm to the nasopharynx and cilia. The current research aimed to develop orally disintegrating films (ODFs) of RZT employing maltodextrin (MTX) and pullulan (PUL) as film-forming polymers, as well as propylene glycol (PG) as a plasticizer. The ODFs were prepared by solvent casting method (SCM). The technique was optimized using Box-Behnken design (BBD), contemplating the ratios of PUL: MTX and different levels of PG (%) as factor variables. The influence of these factors was systematically analyzed on the selected dependent variables, including film thickness, disintegration time (D-time), folding endurance (FE), tensile strength (TS), percent elongation (%E), moisture content (%), and water uptake (%). In addition, the surface morphology, solid state analysis, drug content uniformity (%), drug release (%), and pH of the RZT-ODFs were also studied. The results demonstrated a satisfactory stable RZT-ODFs formulation that exhibited surface homogeneity and amorphous RZT in films with no discernible interactions between the model drug and polymeric materials. The optimized film showed a rapid D-time of 16 s and remarkable mechanical features. The in vitro dissolution kinetics showed that 100% RZT was released from optimized film compared to 61% RZT released from conventional RZT formulation in the initial 5 min. An animal pharmacokinetic (PK) investigation revealed that RZT-ODFs had a shorter time to achieve peak plasma concentration (T), a higher maximum plasma concentration (C), and area under the curve (AUC) than traditional oral mini capsules. These findings proposed a progressive approach for developing anti-migraine drugs that could be useful in reducing the complications of dysphagia in geriatric and pediatric sufferers.

Learn More >

Gynecologic care of women with chronic pelvic pain: Patient perspectives and care preferences.

To explore the experiences and care preferences of women with chronic pelvic pain, with or without a history of sexual trauma, seeking gynaecologic care.

Learn More >

Environmental Pain Approach (EPA): Sustainability in Chronic Pain Practice.

Learn More >

Exercise facilitates regeneration after severe nerve transection and further modulates neural plasticity.

Patients with severe traumatic peripheral nerve injury (PNI) always suffer from incomplete recovery and poor functional outcome. Physical exercise-based rehabilitation, as a non-invasive interventional strategy, has been widely acknowledged to improve PNI recovery by promoting nerve regeneration and relieving pain. However, effects of exercise on chronic plastic changes following severe traumatic PNIs have been limitedly discussed. In this study, we created a long-gap sciatic nerve transection followed by autograft bridging in rats and tested the therapeutic functions of treadmill running with low intensity and late initiation. We demonstrated that treadmill running effectively facilitated nerve regeneration and prevented muscle atrophy and thus improved sensorimotor functions and walking performance. Furthermore, exercise could reduce inflammation at the injured nerve as well as prevent the overexpression of TRPV1, a pain sensor, in primary afferent sensory neurons. In the central nervous system, we found that PNI induced transcriptive changes at the ipsilateral lumber spinal dorsal horn, and exercise could reverse the differential expression for genes involved in the Notch signaling pathway. In addition, through neural imaging techniques, we found volumetric, microstructural, metabolite, and neuronal activity changes in supraspinal regions of interest (i.e., somatosensory cortex, motor cortex, hippocampus, etc.) after the PNI, some of which could be reversed through treadmill running. In summary, treadmill running with late initiation could promote recovery from long-gap nerve transection, and while it could reverse maladaptive plasticity after the PNI, exercise may also ameliorate comorbidities, such as chronic pain, mental depression, and anxiety in the long term.

Learn More >

Search