I am a
Home I AM A Search Login

Accepted

Share this

Intestinal neuropod GUCY2C regulates visceral pain.

Visceral pain (VP) is a global problem with complex etiologies and limited therapeutic options. Guanylyl cyclase C (GUCY2C), an intestinal receptor producing cyclic GMP which regulates luminal fluid secretion, has emerged as a therapeutic target for VP. Indeed, FDA-approved GUCY2C agonists ameliorate VP in patients with chronic constipation syndromes, although analgesic mechanisms remain obscure. Here, we reveal that intestinal GUCY2C is selectively enriched in neuropod cells, a type of enteroendocrine cell that synapses with submucosal neurons in mice and humans. GUCY2CHigh neuropod cells associate with co-cultured dorsal root ganglia neurons and induce hyperexcitability, reducing the rheobase and increasing the resulting number of evoked action potentials. Conversely, the GUCY2C agonist linaclotide eliminated neuronal hyperexcitability produced by GUCY2C-sufficient, but not GUCY2C-deficient, neuropod cells, an effect independent of bulk epithelial cells or extracellular cGMP. Genetic elimination of intestinal GUCY2C amplified nociceptive signaling and VP that was comparable to chemically-induced VP but refractory to linaclotide. Importantly, eliminating GUCY2C selectively in neuropod cells also increased nociceptive signaling and VP that was refractory to linaclotide. In the context of loss of GUCY2C hormones in patients with VP, these observations suggest a specific role for neuropod GUCY2C signaling in the pathophysiology and treatment of these pain syndromes.

Learn More >

miR-1306-3p directly activates P2X3 receptors in primary sensory neurons to induce visceral pain in rats.

Mounting evidence indicates that microRNAs (miRNAs) play critical roles in various pathophysiological conditions and diseases, but the physiological roles of extracellular miRNAs on the disease-related ion channels remain largely unknown. Here, we showed that miR-1306-3p evoked action potentials and induced inward currents of the acutely isolated rat dorsal root ganglion (DRG) neurons. The miR-1306-3p-induced effects were significantly inhibited by A317491, a potent inhibitor of the P2X3 receptor (P2X3R), or disappeared after the knockdown of P2X3Rs in DRG neurons. We further identified R180, K315, and R52 as the miR-1306-3p interaction sites on the extracellular domain of P2X3Rs, which were distinct from the orthosteric ATP-binding sites. Intrathecal injection of miR-1306-3p produced visceral pain but not somatic pain in normal control rats. Conversely, intrathecal application of a miR-1306-3p antagomir and A317491 significantly alleviated visceral pain in a rat model of chronic visceral pain. Together, our findings suggest that miR-1306-3p might function as an endogenous ligand to activate P2X3Rs, eventually leading to chronic visceral pain.

Learn More >

Mechanisms behind diffuse idiopathic peripheral neuropathy in humans – a systematic review.

Diffuse peripheral neuropathy is a well-known complication of several conditions, whereas many patients have peripheral neuropathy of unknown etiology and pathophyisology. Increased knowledge of mechanisms may provide insight into enteric neuropathy with gastrointestinal dysmotility. The aim of the present systematic review was to identify mechanisms behind diffuse idiopathic peripheral neuropathies in humans. Searches were performed in PubMed, Embase, and Web of Science. Human original and review articles, written in English, describing mechanisms behind diffuse peripheral neuropathy verified by objective examinations were intended to be studied. Articles that described animal models, well-described hereditary diseases, drug-induced neuropathy, pain syndromes, malnutrition, and local neuropathy were excluded. In total, 4712 articles were identified. After scrutinizing titles and abstracts, 633 remained and were studied in full text. After the removal of articles not fulfilling inclusion or exclusion criteria, 52 were finally included in this review. The most frequently described neuropathy was diabetic neuropathy, with a wide range of mechanisms involving mitochondrial dysfunction such as oxidative stress and inflammation. Microvascular changes in diabetes and vasculitis lead to ischemia and secondary oxidative stress with inflammation. Structural changes in neurons and glial cells are observed, with abnormalities in different neurotrophic factors. Neuropathy induced by autoantibodies or immunological mechanisms is described in infectious and systemic inflammatory diseases. Several ion channels may be involved in painful neuropathy. No study identified why some patients mainly develop large fiber neuropathy and others small fiber neuropathy. Metabolic and immunological factors and channelopathy may be considered in diffuse idiopathic peripheral neuropathy.

Learn More >

Exploring the Nerve Regenerative Capacity of Compounds with Differing Affinity for PPARγ In Vitro and In Vivo.

Damage to peripheral nerves can cause debilitating consequences for patients such as lifelong pain and disability. At present, no drug treatments are routinely given in the clinic following a peripheral nerve injury (PNI) to improve regeneration and remyelination of damaged nerves. Appropriately targeted therapeutic agents have the potential to be used at different stages following nerve damage, e.g., to maintain Schwann cell viability, induce and sustain a repair phenotype to support axonal growth, or promote remyelination. The development of therapies to promote nerve regeneration is currently of high interest to researchers, however, translation to the clinic of drug therapies for PNI is still lacking. Studying the effect of PPARγ agonists for treatment of peripheral nerve injures has demonstrated significant benefits. Ibuprofen, a non-steroidal anti-inflammatory drug (NSAID), has reproducibly demonstrated benefits in vitro and in vivo, suggested to be due to its agonist action on PPARγ. Other NSAIDs have demonstrated differing levels of PPARγ activation based upon their affinity. Therefore, it was of interest to determine whether affinity for PPARγ of selected drugs corresponded to an increase in regeneration. A 3D co-culture in vitro model identified some correlation between these two properties. However, when the drug treatments were screened in vivo, in a crush injury model in a rat sciatic nerve, the same correlation was not apparent. Further differences were observed between capacity to increase axon number and improvement in functional recovery. Despite there not being a clear correlation between affinity and size of effect on regeneration, all selected PPARγ agonists improved regeneration, providing a panel of compounds that could be explored for use in the treatment of PNI.

Learn More >

Pediatric Inflammatory Bowel Disease.

Inflammatory bowel diseases (IBDs) are chronic, immune-mediated disorders that include Crohn's disease and ulcerative colitis. A pediatric onset of disease occurs in about 10% of all cases. Clinical presentation of IBD with rectal bleeding or perianal disease warrants direct referral for endoscopic evaluation. In the absence of red-flag symptoms, a combination of patient history and blood and fecal biomarkers can help to distinguish suspected IBD from other causes of abdominal pain or diarrhea. The therapeutic management of pediatric IBD has evolved by taking into account predictors of poor outcome, which justifies the upfront use of anti-tumor necrosis factor therapy for patients at high risk for complicated disease. In treating patients with IBD, biochemical or endoscopic remission, rather than clinical remission, is the therapeutic goal because intestinal inflammation often persists despite resolution of abdominal symptoms. Pediatric IBD comes with unique additional challenges, such as growth impairment, pubertal delay, the psychology of adolescence, and development of body image. Even after remission has been achieved, many patients with IBD continue to experience nonspecific symptoms like abdominal pain and fatigue. Transfer to adult care is a well-recognized risk for disease relapse, which highlights patient vulnerability and the need for a transition program that is continued by the adult-oriented IBD team. The general pediatrician is an invaluable link in integrating these challenges in the clinical care of patients with IBD and optimizing their outcomes. This state-of-the-art review aims to provide general pediatricians with an update on pediatric IBD to facilitate interactions with pediatric gastrointestinal specialists.

Learn More >

Perspectives of colon-specific drug delivery in the management of morning symptoms of rheumatoid arthritis.

Rheumatoid arthritis is a chronic condition that is characterized by joint pain and inflammation. It is an autoimmune disorder in which the body tissues are erroneously attacked by the immune system of the host itself. It has been evident that rheumatoid arthritis symptoms follow a 24 h circadian rhythm and exhibit high thresholds of pain, functional disability, and stiffness predominantly early in the morning. Colon-specific drug delivery systems can be utilized in the formulations to be used in the treatment of rheumatoid arthritis. The colon-specific drug delivery system has shown promising results in the treatment of different diseases at the colonic site like Crohn's disease, ulcerative colitis, colon cancer, etc. The colon-specific drug delivery is capable of delivering the formulation at the predetermined location and predetermined time. The early morning symptoms of rheumatoid arthritis like pain and inflammation can be treated using the various approaches of the colon-specific drug delivery system because it will lead to patient compliance as the patient will not require administering the formulation immediately after waking up in the morning. This review also explains the immunological factors which may trigger rheumatoid arthritis in human beings. It further explores conventional approaches like pH-dependant, microorganisms-driven, pressure-controlled, and time-dependant formulations. By employing two or more conventional approaches given above the various novel approaches have been designed to eliminate the drawbacks of individual techniques.

Learn More >

Safety of transcutaneous auricular vagus nerve stimulation (taVNS): a systematic review and meta-analysis.

Transcutaneous auricular vagus nerve stimulation (taVNS) has been investigated as a novel neuromodulation tool. Although taVNS is generally considered safe with only mild and transient adverse effects (AEs), those specifically caused by taVNS have not yet been investigated. This systematic review and meta-analysis on taVNS aimed to (1) systematically analyze study characteristics and AE assessment, (2) characterize and analyze possible AEs and their incidence, (3) search for predictable risk factors, (4) analyze the severity of AE, and (5) suggest an evidence-based taVNS adverse events questionnaire for safety monitoring. The articles searched were published through April 7, 2022, in Medline, Embase, Web of Science, Cochrane, and Lilacs databases. In general, we evaluated 177 studies that assessed 6322 subjects. From these, 55.37% of studies did not mention the presence or absence of any AEs; only 24.86% of the studies described that at least one adverse event occurred. In the 35 studies reporting the number of subjects with at least one adverse event, a meta-analytic approach to calculate the risk differences of developing an adverse event between active taVNS and controls was used. The meta-analytic overall adverse events incidence rate was calculated for the total number of adverse events reported on a 100,000 person-minutes-days scale. There were no differences in risk of developing an adverse event between active taVNS and controls. The incidence of AE, in general, was 12.84/100,000 person-minutes-days of stimulation, and the most frequently reported were ear pain, headache, and tingling. Almost half of the studies did not report the presence or absence of any AEs. We attribute this to the absence of AE in those studies. There was no causal relationship between taVNS and severe adverse events. This is the first systematic review and meta-analysis of transcutaneous auricular stimulation safety. Overall, taVNS is a safe and feasible option for clinical intervention.

Learn More >

Cluster Headache: Worse in Women.

Learn More >

Sex Differences in Clinical Features, Treatment, and Lifestyle Factors in Patients With Cluster Headache.

Cluster headache is considered a male-dominated disorder, but we have previously suggested that females may display a more severe phenotype. Studies on sex differences in cluster headache have been conflicting, therefore this study, with the largest validated cluster headache material at present, gives more insights into sex-specific characteristics of the disease. The objective with this study was to describe sex differences in patient demographics, clinical phenotype, chronobiology, triggers, treatment, and lifestyle in a Swedish cluster headache population.

Learn More >

Co-use of cannabis and prescription opioids in adults in the USA: a population-based, cross-sectional analysis of the NHANES from 2009 to 2018.

Cannabis and cannabinoids continue to gain popularity as adjuncts or alternatives to opioids in pain management, with evolving evidence of effectiveness. The relationship between cannabis and opioid use has previously been investigated in smaller cohorts or ecological samples, but not yet in a nationally representative sample.

Learn More >

Search