I am a
Home I AM A Search Login

Migraine/Headache

Share this

Noninvasive vagus nerve stimulation and morphine transiently inhibit trigeminal pain signaling in a chronic headache model.

Chronic headache conditions are characterized by persistent sensitization of the trigeminal system, which involves dysfunction of descending pain modulation. We previously reported that noninvasive vagus nerve stimulation (nVNS) inhibits trigeminal nociception in models of episodic migraine through a mechanism involving enhanced serotonergic and GABAergic descending pain signaling.

Learn More >

Severity of Analgesic Dependence and Medication-overuse Headache.

Medication-overuse headache (MOH) is a common chronic headache caused by overuse of headache analgesics. It has similarities with substance dependence disorders. The treatment of choice for MOH is withdrawal of the offending analgesics. Behavioral brief intervention treatment using methods adapted from substance misuse settings is effective. Here we investigate the severity of analgesics dependence in MOH using the Severity of Dependence Scale (SDS), validate the SDS score against formal substance dependence diagnosis based on the Diagnostic and Statistical Manual of Mental Disorders, 4th edition (DSM-IV) and examine whether the SDS predicts successful withdrawal.

Learn More >

Rapid uptake of sumatriptan into the brain: An ongoing question of blood-brain barrier permeability.

Learn More >

Acupuncture for emotional disorders in patients with migraine: a systematic review protocol.

Migraine is the second-leading cause of years lived with disability worldwide. The high prevalence of migraine-related emotional disorders is often overlooked. Acupuncture is often used to treat both migraine and emotional disorders. This systematic review protocol aims to analyse whether acupuncture is effective for treating emotional disorders in patients with migraine.

Learn More >

First FHM3 mouse model shows spontaneous cortical spreading depolarizations.

Here we show, for the first time, spontaneous cortical spreading depolarization (CSD) events – the electrophysiological correlate of the migraine aura – in animals by using the first generated familial hemiplegic migraine type 3 (FHM3) transgenic mouse model. The mutant mice express L263V-mutated α1 subunits in voltage-gated Na 1.1 sodium channels (Scn1a ). CSDs consistently propagated from visual to motor cortex, recapitulating what has been shown in patients with migraine with aura. This model may be valuable for the preclinical study of migraine with aura and other diseases in which spreading depolarization is a prominent feature.

Learn More >

Vascular safety of erenumab for migraine prevention.

To examine the cardiovascular, cerebrovascular, and peripheral vascular safety of erenumab across migraine prevention studies.

Learn More >

Dynamic changes in CGRP, PACAP, and PACAP receptors in the trigeminovascular system of a novel repetitive electrical stimulation rat model: Relevant to migraine.

Migraine is the seventh most disabling disorder globally, with prevalence of 11.7% worldwide. One of the prevailing mechanisms is the activation of the trigeminovascular system, and calcitonin gene-related peptide (CGRP) is an important therapeutic target for migraine in this system. Recent studies suggested an emerging role of pituitary adenylate cyclase-activating peptide (PACAP) in migraine. However, the relation between CGRP and PACAP and the role of PACAP in migraine remain undefined. In this study, we established a novel repetitive (one, three, and seven days) electrical stimulation model by stimulating dura mater in conscious rats. Then, we determined expression patterns in the trigeminal ganglion and the trigeminal nucleus caudalis of the trigeminovascular system. Electrical stimulation decreased facial mechanical thresholds, and the order of sensitivity was as follows: vibrissal pad >inner canthus >outer canthus (P < 0.001). The electrical stimulation group exhibited head-turning and head-flicks (P < 0.05) nociceptive behaviors. Importantly, electrical stimulation increased the expressions of CGRP, PACAP, and the PACAP-preferring type 1 (PAC1) receptor in both trigeminal ganglion and trigeminal nucleus caudalis (P < 0.05). The expressions of two vasoactive intestinal peptide (VIP)-shared type 2 (VPAC1 and VPAC2) receptors were increased in the trigeminal ganglion, whereas in the trigeminal nucleus caudalis, their increases were peaked on Day 3 and then decreased by Day 7. PACAP was colocalized with NEUronal Nuclei (NeuN), PAC1, and CGRP in both trigeminal ganglion and the trigeminal nucleus caudalis. Our results demonstrate that the repetitive electrical stimulation model can simulate the allodynia during the migraine chronification, and PACAP plays a role in the pathogenesis of migraine potentially via PAC1 receptor.

Learn More >

Intact mast cell content during mild head injury is required for development of latent pain sensitization: implications for mechanisms underlying post-traumatic headache.

Post-traumatic headache (PTH) is one of the most common, debilitating and difficult symptoms to manage after a traumatic head injury. While the mechanisms underlying PTH remain elusive, recent studies in rodent models suggest the potential involvement of calcitonin gene-related peptide (CGRP), a mediator of neurogenic inflammation, and the ensuing activation of meningeal mast cells (MCs), pro-algesic resident immune cells that can lead to the activation of the headache pain pathway. Here, we investigated the relative contribution of MCs to the development of PTH-like pain behaviors in a model of mild closed head injury (mCHI) in male rats. We initially tested the relative contribution of peripheral CGRP signaling to the activation of meningeal MCs following mCHI using a blocking anti-CGRP monoclonal antibody. We then employed a prophylactic MC granule depletion approach to address the hypotheses that intact meningeal MC granule content is necessary for the development of PTH-related pain-like behaviors. The data suggest that following mCHI, ongoing activation of meningeal MCs is not mediated by peripheral CGRP signaling, and does not contribute to the development of the mCHI-evoked cephalic mechanical pain hypersensitivity. Our data, however, also reveals that the development of latent sensitization, manifested as persistent hypersensitivity upon the recovery from mCHI-evoked acute cranial hyperalgesia to the headache trigger glyceryl trinitrate requires intact MC content during and immediately after mCHI. Collectively, our data implicate the acute activation of meningeal MCs as mediator of chronic pain hypersensitivity following a concussion or mCHI. Targeting MCs may be explored for early prophylactic treatment of PTH.

Learn More >

Fluctuating regional brainstem diffusion imaging measures of microstructure across the migraine cycle.

The neural mechanisms responsible for the initiation and expression of migraines remain unknown. Though there is growing evidence of changes in brainstem anatomy and function between attacks, very little is known about brainstem function and structure in the period immediately prior to a migraine. The aim of this investigation is to use brainstem-specific analyses of diffusion weighted images to determine if the brainstem pain processing regions display altered structure in individuals with migraine across the migraine cycle, and in particular immediately prior to a migraine. Diffusion tensor images (29 controls, 36 migraineurs) were used to assess brainstem anatomy in migraineurs compared with controls. We found that during the interictal phase, migraineurs displayed greater mean diffusivity in the region of the spinal trigeminal nucleus, dorsomedial/dorsolateral pons and midbrain periaqueductal gray matter/cuneiform nucleus. Remarkably, the mean diffusivity returned to controls levels during the 24-hour period immediately prior to a migraine, only to increase again within the three following days. Additionally, fractional anisotropy was significantly elevated in the region of the medial lemniscus/ventral trigeminal thalamic tract in migraineurs compared with controls over the entire migraine cycle. These data show that regional brainstem anatomy changes over the migraine cycle, with specific anatomical changes occurring in the 24 hours prior to onset. These changes may contribute to the activation of the ascending trigeminal pathway by either an increase in basal traffic or by sensitising the trigeminal nuclei to external triggers, with activation ultimately resulting in perception of head pain during a migraine attack. It has been hypothesised that modulation of brainstem pain pathways may be critical for the initiation of migraine attacks. There is some evidence that altered brainstem function, possibly involving increased astrocyte activation, occurs immediately prior to a migraine attack. We sought to obtain evidence to support this theory. Using diffusion tensor imaging, we found that immediately prior to a migraine, mean diffusivity decreased in the spinal trigeminal nucleus, dorsomedial/dorsolateral pons and midbrain periaqueductal gray matter/nucleus cuneiform. Mean diffusivity then increased again immediately following the migraine attack. Decreased mean diffusivity before a migraine is consistent with increased astrocyte activation, since astrocyte processes enlarge during activation. These changes may underlie changes in brainstem function that are essential for the generation of a migraine.

Learn More >

Factors Associated with Sleep Quality in Patients with Chronic Widespread Pain Attending Multidisciplinary Treatment.

(i) To investigate the prevalence of poor sleep quality and (ii) to explore the associations between clinical, cognitive and emotional factors and quality of sleep in patients with chronic widespread pain (CWP) attending multidisciplinary treatment.

Learn More >

Search