I am a
Home I AM A Search Login

Migraine/Headache

Share this

Insular and occipital changes in visual snow syndrome: a BOLD fMRI and MRS study.

To investigate the pathophysiology of visual snow (VS), through a combined functional neuroimaging and magnetic resonance spectroscopy ( H-MRS) approach.

Learn More >

Medication overuse headache in 787 patients admitted for inpatient treatment over a period of 32 years.

Definitions of medication overuse headache have changed over time.

Learn More >

Cortical potentiation induced by calcitonin gene-related peptide (CGRP) in the insular cortex of adult mice.

Recent studies demonstrate that calcitonin gene-related peptide (CGRP) plays critical roles in migraine. Immunohistochemistry and in situ hybridization studies have shown that CGRP and its receptors are expressed in cortical areas that are critical for pain perception including the anterior cingulate cortex (ACC) and insular cortex (IC). Recent studies reported that CGRP enhanced excitatory transmission in the ACC. However, little is known about the possible effect of CGRP on excitatory transmission in the IC. In the present study, we investigated the role of CGRP on synaptic transmission in the IC slices of adult male mice. Bath application of CGRP produced dose-dependent potentiation of evoked excitatory postsynaptic currents (eEPSCs). This potentiation was NMDA receptor (NMDAR) independent. After application of CGRP1 receptor antagonist CGRP or BIBN 4096, CGRP produced potentiation was significantly reduced. Paired-pulse facilitation was significantly decreased by CGRP, suggesting possible presynaptic mechanisms. Consistently, bath application of CGRP significantly increased the frequency of spontaneous and miniature excitatory postsynaptic currents (sEPSCs and mEPSCs). By contrast, amplitudes of sEPSCs and mEPSCs were not significantly affected. Finally, adenylyl cyclase subtype 1 (AC1) and protein kinase A (PKA) are critical for CGRP-produced potentiation, since both selective AC1 inhibitor NB001 and the PKA inhibitor KT5720 completely blocked the potentiation. Our results provide direct evidence that CGRP contributes to synaptic potentiation in the IC, and the AC1 inhibitor NB001 may be beneficial for the treatment of migraine in the future.

Learn More >

The prevalence of hypnic headache in Iceland.

To determine the prevalence of hypnic headache.

Learn More >

NOP receptor agonist attenuates nitroglycerin-induced migraine-like symptoms in mice.

Migraine is an extraordinarily prevalent and disabling headache disorder that affects one billion people worldwide. Throbbing pain is one of several migraine symptoms including sensitivity to light (photophobia), sometimes to sounds, smell and touch. The basic mechanisms underlying migraine remain inadequately understood, and current treatments (with triptans being the primary standard of care) are not well tolerated by some patients. NOP (Nociceptin OPioid) receptors, the fourth member of the opioid receptor family, are expressed in the brain and periphery with particularly high expression known to be in trigeminal ganglia (TG). The aim of our study was to further explore the involvement of the NOP receptor system in migraine. To this end, we used immunohistochemistry to examine NOP receptor distribution in TG and trigeminal nucleus caudalus (TNC) in mice, including colocalization with specific cellular markers, and used nitroglycerin (NTG) models of migraine to assess the influence of the selective NOP receptor agonist, Ro 64-6198, on NTG-induced pain (sensitivity of paw and head using von Frey filaments) and photophobia in mice. Our immunohistochemical studies with NOP-eGFP knock-in mice indicate that NOP receptors are on the majority of neurons in the TG and are also very highly expressed in the TNC. In addition, Ro 64-6198 can dose dependently block NTG-induced paw and head allodynia, an effect that is blocked by the NOP antagonist, SB-612111. Moreover, Ro 64-6198, can decrease NTG-induced light sensitivity in mice. These results suggest that NOP receptor agonists should be futher explored as treatment for migraine symptoms.

Learn More >

Acute treatment patterns in patients with migraine newly initiating a triptan.

Triptans are the most commonly used acute treatment for migraine. This study evaluated real-world treatment patterns following an initial triptan prescription to understand refill rates and use of non-triptan medications for the acute treatment of migraine.

Learn More >

PAC1 receptor blockade reduces central nociceptive activity: new approach for primary headache?

Pituitary adenylate cyclase activating polypeptide-38 (PACAP38) may play an important role in primary headaches. Preclinical evidence suggests that PACAP38 modulates trigeminal nociceptive activity mainly through PAC1 receptors while clinical studies report that plasma concentrations of PACAP38 are elevated in spontaneous attacks of cluster headache and migraine and normalize after treatment with sumatriptan. Intravenous infusion of PACAP38 induces migraine-like attacks in migraineurs and cluster-like attacks in cluster headache patients. A rodent-specific PAC1 receptor antibody Ab181 was developed and its effect on nociceptive neuronal activity in the trigeminocervical complex was investigated in vivo in an electrophysiological model relevant to primary headaches. Ab181 is potent and selective at the rat PAC1 receptor and provides near maximum target coverage at 10 mg/kg for more than 48 hours. Without affecting spontaneous neuronal activity, Ab181 effectively inhibits stimulus-evoked activity in the trigeminocervical complex. Immunohistochemical analysis revealed its binding in the trigeminal ganglion and sphenopalatine ganglion but not within the CNS suggesting a peripheral site of action. The pharmacological approach using a specific PAC1 receptor antibody could provide a novel mechanism with a potential clinical efficacy in the treatment of primary headaches.

Learn More >

Vagus nerve stimulation inhibits cortical spreading depression exclusively via central mechanisms.

Experimental and clinical data strongly support vagus nerve stimulation (VNS) as a novel treatment in migraine. VNS acutely suppresses cortical spreading depression (CSD) susceptibility, an experimental model that has been used to screen for migraine therapies. However, mechanisms underlying VNS efficacy on CSD are unknown. Here, we interrogated the central and peripheral mechanisms using VNS delivered either invasively (iVNS) or non-invasively (nVNS) in male Sprague-dawley rats. CSD susceptibility was evaluated 40 min after the stimulation. iVNS elevated the electrical CSD threshold more than two-fold and decreased KCl-induced CSD frequency by 22% when delivered to intact vagus nerve. Distal vagotomy did not alter iVNS efficacy (2-fold higher threshold and 19% lower frequency in iVNS vs. sham). In contrast, proximal vagotomy completely abolished iVNS effect on CSD. Pharmacological blockade of nucleus tractus solitarius (NTS), the main relay for vagal afferents, by lidocaine or glutamate receptor antagonist CNQX also prevented CSD suppression by nVNS. Supporting a role for both norepinephrine and serotonin, CSD suppression by nVNS was inhibited by more than 50% after abrogating norepinephrinergic or serotonergic neurotransmission alone using specific neurotoxins; abrogating both completely blocked the nVNS effect. Our results suggest that VNS inhibits CSD through central afferents relaying in NTS and projecting to subcortical neuromodulatory centers providing serotonergic and norepinephrinergic innervation to the cortex.

Learn More >

A comprehensive overview and safety evaluation of fremanezumab as a preventive therapy for migraine.

: Fremanezumab, a humanized monoclonal antibody targeting calcitonin gene-related peptide (CGRP mAb), is a migraine-specific treatment for migraine prevention.: This review will briefly discuss other available and emerging CGRP mAbs and the neurophysiology of fremanezumab. The review will focus on phase III trials of the efficacy of fremanezumab for episodic and chronic trials, and a recent pooled safety and tolerability analysis of its use.: Continued efficacy and safety data collection will help guide long-term risk and efficacy counseling in the general population.

Learn More >

Comorbid and co-occurring conditions in migraine and associated risk of increasing headache pain intensity and headache frequency: results of the migraine in America symptoms and treatment (MAST) study.

Migraine has many presumed comorbidities which have rarely been compared between samples with and without migraine. Examining the association between headache pain intensity and monthly headache day (MHD) frequency with migraine comorbidities is novel and adds to our understanding of migraine comorbidity.

Learn More >

Search