I am a
Home I AM A Search Login

Microglia-mediated chronic psoriatic itch induced by imiquimod.

Activation of glial cells has been shown to play an important role in chronic itch. However, whether glial cells play an important role in the development of psoriasis-induced chronic itch has not been fully elucidated. This study investigated the role of spinal glial cells in psoriasis-induced chronic itch. To develop a mouse model of psoriasis-induce chronic itch, we used 5% imiquimod cream to receive a daily topical application on the shaved back skin for seven consecutive days. The results showed that the expression of microglial marker ionized calcium binding adaptor molecule-1 was significantly increased after 5% imiquimod treatment in cervical spinal cord dorsal horn (C3-C4), and the intrathecal microglial inhibitor minocycline or PLX5622 diet suppressed both spontaneous itch and microglial activation. Furthermore, we found that the number of scratches and alloknesis score in female mice was significantly greater than in male mice after 5% imiquimod treatment. Our results indicate that microglia mediate chronic psoriatic itch induced by imiquimod.

Learn More >

Bulleyaconitine A inhibits itch and itch sensitization induced by histamine and chloroquine.

Itch (pruritus), specifically chronic itch associated with disease conditions, significantly impairs the patient's quality of life. At present, the mechanisms underlying this aversive experience are still unclear, and the effective treatment of itch is largely unmet. Here, we report that intragastrical administration of bulleyaconitine A (BLA), which has been used for treating chronic pain for 30 years in China, inhibited itch-like behaviors induced by intradermal injection of histamine and chloroquine in mice and rats, dose-dependently. We found that a single application of the pruritic agents at the skin region innervated by the sural nerve induced long-term potentiation (LTP) of C-fiber field potentials evoked by the stimulation of the same nerve in the spinal dorsal horn of rats. The spinal LTP was remarkably reversed by the spinal application of either BLA or gastrin-releasing peptide receptor (GRPR) antagonist (PD176252). The effect of PD176252 was completely occluded by BLA, while the effect of BLA was only partially occluded by PD176252. Repetitive injection (daily, for four days) of either histamine or chloroquine in the back of the neck enhanced scratching behaviors progressively, and the itch sensitization persisted for at least one week after the discontinuation of the injections. The behavioral change was accompanied with the potentiation of C-fiber synaptic transmission in the dorsal horn. Both the itch sensitization and synaptic potentiation were substantially attenuated by intragastrical BLA. Together, BLA was effective in inhibiting histamine-dependent and histamine-independent itches, and the mechanisms underlying these effects were involved but not limited to the inhibition of GRP-GRPR signaling in the spinal dorsal horn.

Learn More >

Nociceptor-Mast Cell Sensory Clusters as Regulators of Skin Homeostasis.

Recent studies revealed the existence of unique functional links between mast cells and nociceptors in the skin. Here, we propose that mast cells and nociceptors form a single regulatory unit in both physiology and disease. In this model, MrgprB2/X2 signaling is a primary mechanism by which mast cells functionally interact with nociceptors to form specialized neuroimmune clusters that regulate pain, inflammation, and itch.

Learn More >

Scratching the itch: a new therapeutic target for dialysis-associated pruritus?

Learn More >

Neuronal branching of sensory neurons is associated with BDNF-positive eosinophils in atopic dermatitis.

Pruritus is a major symptom of atopic dermatitis (AD) and is transmitted by a subpopulation of non-myelinated C-type free nerve endings in the epidermis and upper dermis. Stimulation of these nerve terminals is affected by histamine, neurotrophins and physical factors. Eosinophils of patients with AD are a source of neurotrophins, including brain-derived neurotrophic factor (BDNF), levels of which correlate with disease severity.

Learn More >

CXCL12/CXCR4 signaling induced itch and pain sensation in a murine model of allergic contact dermatitis.

Allergic contact dermatitis is a skin inflammatory disease manifested with itch and pain symptom around the inflamed area. Chemokines such as CXCL12 are involved in the pathophysiology of allergic contact dermatitis, but little has been known about the effect of CXCL12/CXCR4 signaling for nociceptive sensation accompanying allergic contact dermatitis. Our study showed that CXCL12 and CXCR4 were upregulated in trigeminal ganglion with the progression of allergic contact dermatitis through western blotting and immunofluorescence. CXCL12 and CXCR4 were mainly upregulated in small-diameter neurons, which were co-localized with nociceptive markers in trigeminal ganglion. CXCR4 and CXCL12 were also expressed in trigeminal ganglion neurons retrograded from the skin lesion. Intradermal injection of CXCL12 enhanced the itch- and pain-like behavior which could be relieved by AMD3100, a CXCR4 antagonist, without changes of mast cells. Our findings suggested that blockade of CXCL12/CXCR4 signaling pathway might be beneficial to relieve itch and pain sensation accompanying allergic contact dermatitis.

Learn More >

PAR2 mediates itch via TRPV3 signaling in keratinocytes.

Animal studies have suggested that transient receptor potential (TRP) ion channels and G protein-coupled receptors (GPCRs) play important roles in itch transmission. TRPV3 gain-of-function mutations have been identified in patients with Olmsted syndrome which is associated with severe pruritus. However, the mechanisms causing itch remain poorly understood. Here, we show that keratinocytes lacking TRPV3 impair the function of protease activated receptor 2 (PAR2), resulting in reduced neuronal activation and scratching behavior in response to PAR2 agonists. Moreover, we show that TRPV3 and PAR2 were upregulated in skin biopsies from patients and mice with atopic dermatitis (AD), whereas their inhibition attenuated scratching and inflammatory responses in mouse AD models. Taken together, these results reveal a previously unrecognized link between TRPV3 and PAR2 in keratinocytes to convey itch information and suggest that a blockade of PAR2 or TRPV3 individually or both may serve as a potential approach for antipruritic therapy in AD.

Learn More >

One step closer to alleviating uraemic pruritus.

Learn More >

Efficacy and Safety of Multiple Dupilumab Dose Regimens After Initial Successful Treatment in Patients With Atopic Dermatitis: A Randomized Clinical Trial.

The dupilumab regimen of 300 mg every 2 weeks is approved for uncontrolled, moderate to severe atopic dermatitis (AD).

Learn More >

Search