I am a
Home I AM A Search Login

Capsaicin suppresses interleukin-31-induced itching partially involved in inhibiting the expression of dorsal root ganglion interleukin-31 receptor A in male mice.

To elucidate the mechanisms underlying the antipruritic effect of capsaicin, we investigated how topical application of capsaicin (0.01, 0.1 and 1.0% w/v) affects spontaneous scratching in NC/Nga mice, inerleukin-31 (IL-31) induced in BALB/c mice, and IL-31 receptor A (IL-31RA) and transient receptor potential vanilloid member 1 (TRPV1) mRNA expression in dorsal root ganglia (DRG). Capsaicin concentration-dependently suppressed long-lasting scratching (over 1.0 s, itch-associated scratching) and short-lasting scratching (0.3-1.0 s, locomotor activity) immediately after the application. Total long-lasting scratching and short-lasting scratching counts for 24 h and IL-31RA mRNA expression in the DRG significantly decreased with increasing concentration of capsaicin. Furthermore, 1.0% capsaicin suppressed long-lasting scratching and short-lasting scratching for more than 72 h. At this point, DRG IL-31RAmRNA was significantly decreased, but there was no change in cutaneous IL-31RA and TRPV1 mRNA. Thus capsaicin suppresses long-lasting scratching by inhibiting IL-31RA mRNA expression in the DRG. Next, we examined the effect of capsaicin on IL-31-induced long-lasting scratching in BALB/c mice. Repeated administration of IL-31 (50 μg/kg, subcutaneous) every 12 h for 3 days apparently increased long-lasting scratching counts and IL-31RA mRNA in the DRG. These increases were significantly suppressed by pretreatment with 1.0% capsaicin. TRPV1 mRNA in the DRG was also decreased within 1-24 h after capsaicin application. These results suggest that the strong and prolonged antipruritic action for IL-31-induced itching of capsaicin was caused by desensitization of C-fibers, and, in addition, the long-lasting inhibition of IL-31RA mRNA expression in the DRG.

Learn More >

Challenges in Clinical Research and Care in Pruritus.

Chronic pruritus is a frequent global condition. The pathophysiology, underlying aetiology, clinical manifestation, associated burden and response to therapy of chronic pruritus varies from patient to patient, making clinical research and management of this condition challenging. There are still several unmet needs, such as the need to standardize translational research protocols, diagnostic and therapeutic procedures and to enhance the knowledge of the humanistic and economic burden associated with chronic pruritus. Basic and clinical research is of the utmost importance to target these matters. Clinical research has the potential to identify new relevant mechanisms in affected patients, which may lead to identification of novel therapy targets. This article discusses in depth current shortcomings in the daily care of patients with chronic pruritus and the challenges clinical researchers and physicians treating chronic pruritus face in addressing these matters.

Learn More >

Cathepsin S acts via protease-activated receptor 2 to activate sensory neurons and induce itch-like behaviour.

Chronic itch is a debilitating condition characterised by excessive scratching and is a symptom frequently reported in skin diseases such as atopic dermatitis. It has been proposed that release of the cysteine protease Cathepsin S (CatS) from skin keratinocytes or immune cells resident in or infiltrating the skin could act as a pruritogen in chronic itch conditions. CatS is known to activate protease-activated receptor 2 (PAR2). We therefore hypothesised that enzymatic activation of neuronally expressed PAR2 by CatS was responsible for activation of sensory neurons and transmission of itch signals. Intradermally-injected human recombinant (hr)-CatS or the PAR2 agonist, SLIGRL-NH behaved as pruritogens by causing scratching behaviour in mice. Hr-CatS-induced scratching behaviour was prevented by CatS inhibitors and PAR2 antagonists and reduced by 50% in TRPV1 mice compared with wild-type mice, whilst no significant reduction in scratching behaviour was observed in TRPA1 mice. Cultured dorsal root ganglion (DRG) cells showed an increase in [Ca] following incubation with hr-CatS, and the percentage of neurons that responded to hr-CatS decreased in the presence of a PAR2 antagonist or in cultures of neurons from TRPV1 mice. Taken together, our results indicate CatS acts as a pruritogen via PAR2 activation in TRPV1-expressing sensory neurons.

Learn More >

A New Generation of Treatments for Itch.

For decades, antihistamines have been the mainstay of treatment for chronic pruritus, yet they often only work by making patients drowsy and forgetful of their itch. A new era of antipruritic drugs is quickly approaching, presenting more effective treatments for patients suffering from chronic itch. Several treatments have been developed targeting specific receptors in the nervous system, such as the transient receptor potential channels, sodium channels, neurokinin-1 receptors, opioid receptors, and many more. Additionally, antipruritic therapies developed to work on the immune system have become more targeted, leading to greater safety and efficacy measures. These include crisaborole, several interleukin antagonists, and janus kinase inhibitors. The promising results presented with these new antipruritic therapies allow physicians to be better equipped to treat their itchy patients.

Learn More >

Microglia-mediated chronic psoriatic itch induced by imiquimod.

Activation of glial cells has been shown to play an important role in chronic itch. However, whether glial cells play an important role in the development of psoriasis-induced chronic itch has not been fully elucidated. This study investigated the role of spinal glial cells in psoriasis-induced chronic itch. To develop a mouse model of psoriasis-induce chronic itch, we used 5% imiquimod cream to receive a daily topical application on the shaved back skin for seven consecutive days. The results showed that the expression of microglial marker ionized calcium binding adaptor molecule-1 was significantly increased after 5% imiquimod treatment in cervical spinal cord dorsal horn (C3-C4), and the intrathecal microglial inhibitor minocycline or PLX5622 diet suppressed both spontaneous itch and microglial activation. Furthermore, we found that the number of scratches and alloknesis score in female mice was significantly greater than in male mice after 5% imiquimod treatment. Our results indicate that microglia mediate chronic psoriatic itch induced by imiquimod.

Learn More >

Bulleyaconitine A inhibits itch and itch sensitization induced by histamine and chloroquine.

Itch (pruritus), specifically chronic itch associated with disease conditions, significantly impairs the patient's quality of life. At present, the mechanisms underlying this aversive experience are still unclear, and the effective treatment of itch is largely unmet. Here, we report that intragastrical administration of bulleyaconitine A (BLA), which has been used for treating chronic pain for 30 years in China, inhibited itch-like behaviors induced by intradermal injection of histamine and chloroquine in mice and rats, dose-dependently. We found that a single application of the pruritic agents at the skin region innervated by the sural nerve induced long-term potentiation (LTP) of C-fiber field potentials evoked by the stimulation of the same nerve in the spinal dorsal horn of rats. The spinal LTP was remarkably reversed by the spinal application of either BLA or gastrin-releasing peptide receptor (GRPR) antagonist (PD176252). The effect of PD176252 was completely occluded by BLA, while the effect of BLA was only partially occluded by PD176252. Repetitive injection (daily, for four days) of either histamine or chloroquine in the back of the neck enhanced scratching behaviors progressively, and the itch sensitization persisted for at least one week after the discontinuation of the injections. The behavioral change was accompanied with the potentiation of C-fiber synaptic transmission in the dorsal horn. Both the itch sensitization and synaptic potentiation were substantially attenuated by intragastrical BLA. Together, BLA was effective in inhibiting histamine-dependent and histamine-independent itches, and the mechanisms underlying these effects were involved but not limited to the inhibition of GRP-GRPR signaling in the spinal dorsal horn.

Learn More >

Nociceptor-Mast Cell Sensory Clusters as Regulators of Skin Homeostasis.

Recent studies revealed the existence of unique functional links between mast cells and nociceptors in the skin. Here, we propose that mast cells and nociceptors form a single regulatory unit in both physiology and disease. In this model, MrgprB2/X2 signaling is a primary mechanism by which mast cells functionally interact with nociceptors to form specialized neuroimmune clusters that regulate pain, inflammation, and itch.

Learn More >

Scratching the itch: a new therapeutic target for dialysis-associated pruritus?

Learn More >

Neuronal branching of sensory neurons is associated with BDNF-positive eosinophils in atopic dermatitis.

Pruritus is a major symptom of atopic dermatitis (AD) and is transmitted by a subpopulation of non-myelinated C-type free nerve endings in the epidermis and upper dermis. Stimulation of these nerve terminals is affected by histamine, neurotrophins and physical factors. Eosinophils of patients with AD are a source of neurotrophins, including brain-derived neurotrophic factor (BDNF), levels of which correlate with disease severity.

Learn More >

CXCL12/CXCR4 signaling induced itch and pain sensation in a murine model of allergic contact dermatitis.

Allergic contact dermatitis is a skin inflammatory disease manifested with itch and pain symptom around the inflamed area. Chemokines such as CXCL12 are involved in the pathophysiology of allergic contact dermatitis, but little has been known about the effect of CXCL12/CXCR4 signaling for nociceptive sensation accompanying allergic contact dermatitis. Our study showed that CXCL12 and CXCR4 were upregulated in trigeminal ganglion with the progression of allergic contact dermatitis through western blotting and immunofluorescence. CXCL12 and CXCR4 were mainly upregulated in small-diameter neurons, which were co-localized with nociceptive markers in trigeminal ganglion. CXCR4 and CXCL12 were also expressed in trigeminal ganglion neurons retrograded from the skin lesion. Intradermal injection of CXCL12 enhanced the itch- and pain-like behavior which could be relieved by AMD3100, a CXCR4 antagonist, without changes of mast cells. Our findings suggested that blockade of CXCL12/CXCR4 signaling pathway might be beneficial to relieve itch and pain sensation accompanying allergic contact dermatitis.

Learn More >

Search