I am a
Home I AM A Search Login

MRGPRX4 is a bile acid receptor for human cholestatic itch.

Patients with liver diseases often suffer from chronic itch, yet the pruritogen(s) and receptor(s) remain largely elusive. Here, we identify bile acids as natural ligands for MRGPRX4. MRGPRX4 is expressed in human dorsal root ganglion (hDRG) neurons and co-expresses with itch receptor HRH1. Bile acids elicited Ca responses in cultured hDRG neurons, and bile acids or a MRGPRX4 specific agonist induced itch in human subjects. However, a specific agonist for another bile acid receptor TGR5 failed to induce itch in human subjects and we find that human TGR5 is not expressed in hDRG neurons. Finally, we show positive correlation between cholestatic itch and plasma bile acids level in itchy patients and the elevated bile acids is sufficient to activate MRGPRX4. Taken together, our data strongly suggest that MRGPRX4 is a novel bile acid receptor that likely underlies cholestatic itch in human, providing a promising new drug target for anti-itch therapies.

Learn More >

Inhibition of the Warm-temperature Activated Ca2+-permeable TRPV3 Channel Attenuates Atopic Dermatitis.

Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by cutaneous lesions and intense pruritus. The warm temperature-activated Ca2+-permeable TRPV3 channel is abundantly expressed in the keratinocytes, and gain-of-function mutations of TRPV3 cause skin lesions and pruritus in rodents and humans, suggesting an involvement of TRPV3 in the pathogenesis of AD. Here we report that pharmacological and genetic inhibition of TRPV3 attenuates skin lesions and dermatitis in mice. In mouse AD-like model induced by topical application of chemical DNFB, we found that TRPV3 proteins together with inflammatory factors TNF-α and IL-6 were upregulated in the skin detected by Western blot and immunostaining assay. Pharmacological activation of TRPV3 by channel agonist skin sensitizer carvacrol resulted in development of AD in WT mice, but not TRPV3 knockout mice. Furthermore, inhibition of TRPV3 by natural osthole reversed the severity of inflammatory dorsal skin and ear edema in dose-dependent manner, and also decreased the expression of inflammatory factors TNF-α and IL-6. Taken together, our findings demonstrate the involvement of overactive TRPV3 in the progressive pathology of AD in mice, and topical inhibition of TRPV3 channel function may represent an effective prevention and therapy for AD or inflammatory skin diseases. SIGNIFICANCE STATEMENT: Overactive TRPV3 channel is critically involved in the pathogenesis of atopic dermatitis. Inhibition of TRPV3 channel function by topical natural osthole may represent an effective therapy for management of atopic dermatitis aimed at preventing or alleviating skin lesions and severe itching.

Learn More >

Dietary supplementation of omega-3 fatty acid eicosapentaenoic acid does not ameliorate pruritus in murine models of atopic dermatitis and psoriasis.

Learn More >

Involvement of α-Melanocyte-Stimulating Hormone-Thromboxane A System on Itching in Atopic Dermatitis.

α-Melanocyte-stimulating hormone (α-MSH) is an endogenous peptide hormone involved in cutaneous pigmentation in atopic dermatitis (AD) with severe itching. α-MSH elicits itch-related responses in mice. We therefore investigated whether α-MSH was involved in itching in AD. In the skin of AD patients and mice with atopy-like dermatitis, α-MSH and the prohormone convertase 2, which is the key processing enzyme for the production of α-MSH, were distributed mainly in keratinocytes. In the skin of mice with dermatitis, α-MSH receptors (MC1R and MC5R) were expressed at the mRNA level and were distributed in the dermis. In the dorsal root ganglion (DRG) of mice with dermatitis, mRNAs encoding MC1 and MC3∼5 were also expressed. MC1R antagonist agouti-signaling protein inhibited spontaneous scratching in mice with dermatitis. In healthy mice, intradermal α-MSH elicited itch-associated responses, which were inhibited by TP thromboxane (TX) receptor antagonist ONO-3708. In mouse keratinocytes, α-MSH increased the production of TXA, which was inhibited by adenylyl cyclase inhibitor SQ-22536 and Ca chelator EGTA. In mouse keratinocytes treated with siRNA for MC1R and/or MC5R, α-MSH-induced TXA production was decreased. α-MSH increased intracellular Ca ion concentration in DRG neurons and keratinocytes. These results suggest that α-MSH is involved in itching during AD and may elicit itching through the direct action of primary afferents and TXA production by keratinocytes.

Learn More >

Comparison of pruritus and sensory qualities induced by capsaicin, histamine and cowhage.

In skin diseases and experimental models of pruritus, pure itch is accompanied by additional sensations that are poorly characterised.

Learn More >

Spinal IL-33/ST2 signaling mediates chronic itch in mice through the astrocytic JAK2-STAT3 cascade.

Interleukin-33 (IL-33) and its receptor ST2 contribute to spinal glial activation and chronic pain. A recent study showed that peripheral IL-33 plays a pivotal role in the pathogenesis of chronic itch induced by poison ivy. However, how IL-33/ST2 signaling in the spinal cord potentially mediates chronic itch remains elusive. Here, we determined that St2 substantially reduced scratching behaviors in 2,4-dinitrofluorobenzene (DNFB)-induced allergic contact dermatitis (ACD) as well as acetone and diethylether followed by water-induced dry skin in mice. Intrathecal administration of the neutralizing anti-ST2 or anti-IL-33 antibody remarkably decreased the scratching response in DNFB-induced ACD mice. Expression of spinal IL-33 and ST2 significantly increased in ACD mice, as evidenced by increased mRNA and protein levels. Immunofluorescence and in situ hybridization demonstrated that increased expression of spinal IL-33 was predominant in oligodendrocytes and astrocytes, whereas ST2 was mainly expressed in astrocytes. Further studies showed that in ACD mice, the activation of astrocytes and increased phosphorylation of signal transducer and activator of transcription 3 (STAT3) were markedly attenuated by St2 . Intrathecal injection of Janus Kinase 2 Inhibitor AG490 significantly alleviated scratching behaviors in ACD mice. rIL-33 pretreatment exacerbated gastrin-releasing peptide (GRP)-evoked scratching behaviors. This increased gastrin-releasing peptide receptor (GRPR) expression was abolished by St2 . Tnf-α upregulation was suppressed by St2 . Our results indicate that the spinal IL-33/ST2 signaling pathway contributes to chronic itch via astrocytic JAK2-STAT3 cascade activation, promoting TNF-α release to regulate the GRP/GRPR signaling-related itch response. Thus, these findings provide a potential therapeutic option for treating chronic pruritus.

Learn More >

Altered expression of itch‑related mediators in the lower cervical spinal cord in mouse models of two types of chronic itch.

In this study, we focused on several itch‑related molecules and receptors in the spinal cord with the goal of clarifying the specific mediators that regulate itch sensation. We investigated the involvement of serotonin receptors, opioid receptors, glia cell markers and chemokines (ligands and receptors) in models of acetone/ether/water (AEW)‑ and diphenylcyclopropenone (DCP)‑induced chronic itch. Using reverse transcription‑quantitative polymerase chain reaction, we examined the expression profiles of these mediators in the lower cervical spinal cord (C5‑8) of two models of chronic itch. We found that the gene expression levels of opioid receptor mu 1 (Oprm1), 5‑hydroxytryptamine receptor 1A (Htr1a) and 5‑hydroxytryptamine receptor 6 (Htr6) were upregulated. Among the chemokines, the expression levels of C‑C motif chemokine ligand (Ccl)21, Cxcl3 and Cxcl16 and their receptors, Ccr7, Cxcr2 and Cxcr6, were simultaneously upregulated in the spinal cords of the mice in both models of chronic itch. By contrast, the expression levels of Ccl2, Ccl3, Ccl4 and Ccl22 were downregulated. These findings indicate that multiple mediators, such as chemokines in the spinal cord, are altered and may be central candidates in further research into the mechanisms involved in the development of chronic itch.

Learn More >

Emerging Methods to Objectively Assess Pruritus in Atopic Dermatitis.

Atopic dermatitis (AD) is an inflammatory skin disease with a chronic, relapsing course. Clinical features of AD vary by age, duration, and severity but can include papules, vesicles, erythema, exudate, xerosis, scaling, and lichenification. However, the most defining and universal symptom of AD is pruritus. Pruritus or itch, defined as an unpleasant urge to scratch, is problematic for many reasons, particularly its negative impact on quality of life. Despite the profoundly negative impact of pruritus on patients with AD, clinicians and researchers lack standardized and validated methods to objectively measure pruritus. The purpose of this review is to discuss emerging methods to assess pruritus in AD by describing objective patient-centered tools developed or enhanced over the last decade that can be utilized by clinicians and researchers alike.

Learn More >

Signal Transducer and Activator of Transcription 3 in Keratinocytes Regulates Histaminergic Itch but Not Nonhistaminergic Itch.

Learn More >

Bursting Enables GRP Neurons to Engage Spinal Itch Circuits.

Learn More >

Search