I am a
Home I AM A Search Login

Papers of the Week


2021


Nihon Yakurigaku Zasshi


156


3

[MOPr-DOPr heteromer: the meaning and possibility as novel therapeutic target for pain control].

Authors

Abstract

Many studies suggest opioid receptor (OPr) dimerization modulates the pharmacological properties of opiates. Specifically, heteromerization between OPr types has been reported to lead to changes in intracellular signaling. Thus, ligands targeting heteromers are expected to be novel therapeutic targets with reduced side effects. The heteromers of mu (MOPr) and delta (DOPr) are detected in brain regions involved in pain processing. The bivalent ligand or small molecule were identified as a MOPr-DOPr targeting ligand. These ligands exhibit antinociceptive properties similar to that of morphine with lesser antinociceptive tolerance as compared to morphine. Studies exploring the in vivo regulation of MOPr-DOPr heteromers, showed chronic morphine administration leads to an upregulation of these heteromers in select brain regions. Exploration of mechanisms underlying this phenomenon led us to the G protein-coupled receptor chaperone, RTP4, that is induced by chronic morphine and facilitates the heteromerization of MOPr and DOPr. In this review, I will introduce the simulated structure or property of MOPr-DOPr heteromer, its targeting ligands, and its intracellular regulatory mechanism that include a key molecule like RTP4 that could serve as a scaffold for the development of novel therapeutic drugs with reduced adverse effects, and hence may take place of the conventional clinical opioids.