I am a
Home I AM A Search Login

Papers of the Week


Papers: 4 Jul 2020 - 10 Jul 2020


Human Studies


2020 Jun 25


Neuroimage Clin


27

Default mode network connectivity is related to pain frequency and intensity in adolescents.

Authors

Jones SA, Morales AM, Holley AL, Wilson AC, Nagel BJ
Neuroimage Clin. 2020 Jun 25; 27:102326.
PMID: 32634754.

Abstract

Pain during adolescence is common and is associated with future pain chronicity and mental health in adulthood. However, understanding of the neural underpinnings of chronic pain has largely come from studies in adults, with recent studies in adolescents suggesting potentially unique neural features during this vulnerable developmental period. In addition to alterations in the pain network, resting state functional magnetic resonance imaging studies in adults suggest alterations in the default mode network (DMN), involved in internally-driven, self-referential thought, may underlie chronic pain; however, these findings have yet to be examined in adolescents. The current study sought to investigate associations between pain frequency and intensity, and disruptions in DMN connectivity, in adolescents. Adolescents (ages 12-20) with varying levels of pain frequency and intensity, recruited from a pediatric pain clinic and the local community (n = 86; 60% female), underwent resting state functional magnetic resonance imaging. Using independent components analysis, the DMN was identified and correlated voxel-wise to assess associations between pain frequency and intensity and DMN connectivity. Findings revealed that adolescents with greater pain frequency demonstrated greater DMN to superior frontal gyrus connectivity, while adolescents with greater pain intensity demonstrated lesser DMN to cerebellum (lobule VIII) connectivity, during rest. These findings suggest that increasing levels of pain are associated with potential desegregation of the DMN and the prefrontal cortex, important for cognitive control, and with novel patterns of DMN to cerebellum connectivity. These findings may prove beneficial as neurobiological targets for future treatment efforts in adolescents.