I am a
Home I AM A Search Login

Papers of the Week


Papers: 2 Nov 2019 - 8 Nov 2019


Animal Studies


2019 Nov 05


Sci Rep


9


1

Inhibiting the LPS-induced enhancement of mEPSC frequency in superficial dorsal horn neurons may serve as an electrophysiological model for alleviating pain.

Authors

Yang C-T, Hung S-Y, Hsu S-F, MacDonald I, Lin J-G, Luo S-T, Lin P-L, Chen Y-H
Sci Rep. 2019 Nov 05; 9(1):16032.
PMID: 31690742.

Abstract

Pain is a major primary health care problem. Emerging studies show that inhibition of spinal microglial activation reduces pain. However, the precise mechanisms by which microglial activation contributes to nociceptive synaptic transmission remain unclear. In this study, we measured spontaneous synaptic activity of miniature excitatory postsynaptic currents (mEPSCs) in rat spinal cord superficial dorsal horn (SDH, laminae I and II) neurons. Lipopolysaccharide (LPS) and adenosine triphosphate (ATP) increased the frequency, but not amplitude, of mEPSCs in SDH neurons. Microglial inhibitors minocycline and paeonol, as well as an astrocyte inhibitor, a P2Y1 receptor (P2Y1R) antagonist, and a metabotropic glutamate receptor 5 (mGluR5) antagonist, all prevented LPS-induced enhancement of mEPSC frequency. In mouse behavioral testing, minocycline and paeonol effectively reduced acetic acid-induced writhing and LPS-induced hyperalgesia. These results indicate that LPS-activated microglia release ATP, which stimulates astrocyte P2Y1Rs to release glutamate, triggering presynaptic mGluR5 receptors and increasing presynaptic glutamate release, leading to an increase in mEPSC frequency and enhancement of nociceptive transmission in SDH neurons. We propose that these effects can serve as a new electrophysiological model for evaluating pain. Moreover, we predict that pharmacologic agents capable of inhibiting the LPS-induced enhancement of mEPSC frequency in SDH neurons will have analgesic effects.