I am a
Home I AM A Search Login

Papers of the Week

Papers: 17 Jun 2023 - 23 Jun 2023

Basic Science

Animal Studies, Neurobiology, Pharmacology/Drug Development

Neuropathic Pain

2023 Jun 05



Vinorelbine causes a neuropathic pain-like state in mice via STING and MNK1 signaling associated with type I interferon induction.


Franco-Enzástiga Ú, Natarajan K, David ET, Patel KJ, Ravirala A, Price TJ


Type I interferons (IFNs) increase the excitability of dorsal root ganglion (DRG) neurons via activation of MNK-eIF4E translation signaling to promote pain sensitization in mice. Activation of STING signaling is a key component of type I IFN induction. Manipulation of STING signaling is an active area of investigation in cancer and other therapeutic areas. Vinorelbine is a chemotherapeutic that activates STING and has been shown to cause pain and neuropathy in oncology clinical trials in patients. There are conflicting reports on whether STING signaling promotes or inhibits pain in mice. We hypothesized that vinorelbine would cause a neuropathic pain-like state in mice via STING and signaling pathways in DRG neurons associated with type I IFN induction. Vinorelbine (10 mg/kg, i.v.) induced tactile allodynia and grimacing in WT male and female mice and increased p-IRF3 and type I IFN protein in peripheral nerves. In support of our hypothesis, vinorelbine-mediated pain was absent in male and female Sting mice. Vinorelbine also failed to induce IRF3 and type I IFN signaling in these mice. Since type I IFNs engage translational control via MNK1-eIF4E in DRG nociceptors, we assessed vinorelbine-mediated p-eIF4E changes. Vinorelbine increased p-eIF4E in DRG in WT animals but not in Sting or (MNK1 KO) mice. Consistent with these biochemical findings, vinorelbine had an attenuated pro-nociceptive effect in male and female MNK1 KO mice. Our findings support the conclusion that activation of STING signaling in the peripheral nervous system causes a neuropathic pain-like state that is mediated by type I IFN signaling to DRG nociceptors.