I am a
Home I AM A Search Login

Papers of the Week


Papers: 22 Apr 2023 - 28 Apr 2023

RESEARCH TYPE:
Basic Science


Animal Studies, In Vitro Studies, Molecular/Cellular, Neurobiology, Pharmacology/Drug Development

PAIN TYPE:
Neuropathic Pain


2023 Apr 11


bioRxiv


37090527

Validation of σ R/TMEM97 as a neuropathic pain target: Specificity, human expression and mechanism of action.

Authors

Yousuf MS, Sahn JJ, David ET, Shiers S, Royer DM, Garcia CD, Zhang J, Hong VM, Ahmad A, Kolber BJ, Liebl DJ, Martin SF, Price TJ

Abstract

The Sigma 2 receptor (σ R) was described pharmacologically more than three decades ago, but its molecular identity remained obscure until recently when it was identified as transmembrane protein 97 (TMEM97). We and others have shown that σ R/TMEM97 ligands produce analgesia in mouse neuropathic pain models with a time course wherein analgesic onset is 24 hours following dosing. We sought to understand this unique anti-neuropathic pain effect by addressing two key questions: do these σ R/TMEM97 compounds act selectively via the receptor, and what is their downstream mechanism on nociceptive neurons. Using male and female conventional knockout (KO) mice for we find that a novel σ R/TMEM97 binding compound, FEM-1689, requires the presence of the gene to produce analgesia in the spared nerve injury model in mice. Using primary mouse dorsal root ganglion (DRG) neurons, we demonstrate that FEM-1689 inhibits the integrated stress response and promotes neurite outgrowth via a σ R/TMEM97-specific action. We extend the clinical translational value of these findings by showing that FEM-1689 reduces ISR and p-eIF2α levels in human sensory neurons and that it alleviates the pathogenic engagement of ISR by methylglyoxal. We also demonstrate that σ R/TMEM97 is expressed in human nociceptors and satellite glial cells. These results validate σ R/TMEM97 as a promising target for further development for the treatment of neuropathic pain.