I am a
Home I AM A Search Login

Papers of the Week


Papers: 7 Sep 2024 - 13 Sep 2024


2024 Aug 26


bioRxiv


39253487

TUMOR-INFILTRATING NOCICEPTOR NEURONS PROMOTE IMMUNOSUPPRESSION.

Authors

Restaino AC, Ahmadi M, Nikpoor AR, Walz A, Balood M, Eichwald T, Talbot S, Vermeer PD

Abstract

Nociceptor neurons impact tumor immunity. Removing nociceptor neurons reduced myeloid-derived suppressor cell (MDSCs) tumor infiltration in mouse models of head and neck carcinoma and melanoma. Carcinoma-released small extracellular vesicles (sEVs) attract nociceptive nerves to tumors. sEV-deficient tumors fail to develop in mice lacking nociceptor neurons. Exposure of dorsal root ganglia (DRG) neurons to cancer sEVs elevated expression of Substance P, IL-6 and injury-related neuronal markers while treatment with cancer sEVs and cytotoxic CD8 T-cells induced an immunosuppressive state (increased exhaustion ligands and cytokines). Cancer patient sEVs enhanced DRG responses to capsaicin, indicating increased nociceptor sensitivity. Conditioned media from DRG and cancer cell co-cultures promoted expression of MDSC markers in primary bone marrow cells while DRG conditioned media together with cancer sEVs induced checkpoint expression on T-cells. Our findings indicate that nociceptor neurons facilitate CD8+ T cell exhaustion and enhance MDSC infiltration. Targeting nociceptor-released IL-6 emerges as a novel strategy to disrupt harmful neuro-immune interactions in cancer and enhance anti-tumor immunity.