I am a
Home I AM A Search Login

Papers of the Week

Papers: 23 Mar 2024 - 29 Mar 2024

2024 Mar 26

J Clin Invest


Editor's Pick

Satellite glial GPR37L1 and its ligand maresin 1 regulate potassium channel signaling and pain homeostasis.


Bang S, Jiang C, Xu J, Chandra S, McGinnis A, Luo X, He Q, Li Y, Wang Z, Ao X, Parisien M, Oliveira Fernandes de Araujo L, Jahangiri Esfahani S, Zhang Q, Tonello R, Berta T, Diatchenko L, Ji RR


G protein-coupled receptor 37-like 1 (GPR37L1) is an orphan GPCR with largely unknown functions. Here we report that Gpr37l1/GRP37L1 ranks among the most highly expressed GPCR transcripts in mouse and human dorsal root ganglia (DRGs), selectively expressed in satellite glial cells (SGCs). Peripheral neuropathy induced by streptozotoxin (STZ) and paclitaxel (PTX) led to reduced GPR37L1 expression on the plasma membrane expression in mouse and human DRGs. Transgenic mice with Gpr37l1 deficiency exhibited impaired resolution of neuropathic pain symptoms following PTX and STZ-induced pain, whereas overexpression of Gpr37l1 in mouse DRGs reversed pain. GPR37L1 is co-expressed with potassium channels, including KCNJ10 (Kir4.1) in mouse SGCs and both KCNJ3 (Kir3.1) and KCNJ10 in human SGCs. GPR37L1 regulates the surface expression and function of the potassium channels. Notably, the pro-resolving lipid mediator maresin 1 (MaR1) serves as a ligand of GPR37L1 and enhances KCNJ10 or KCNJ3-mediated potassium influx in SGCs through GPR37L1. Chemotherapy suppressed KCNJ10 expression and function in SGCs, which MaR1 rescued through GPR37L1. Finally, genetic analysis revealed that the GPR37L1-E296K variant increased chronic pain risk by destabilizing the protein and impairing the protein’s function. Thus, GPR37L1 in SGCs offers a new therapeutic target for the protection of neuropathy and chronic pain.