I am a
Home I AM A Search Login

Papers of the Week

Papers: 12 Aug 2023 - 18 Aug 2023

Basic Science

Animal Studies, Molecular/Cellular, Neurobiology, Pharmacology/Drug Development

Neuropathic Pain

2023 Aug 11



Rolipram-loaded PgP nanoparticle reduces secondary injury and enhances motor function recovery in a rat moderate contusion SCI model.


Gao J, Khang MK, Liao Z, Webb K, Detloff MR, Lee JS


Spinal cord injury (SCI) results in immediate axonal damage and cell death, as well as a prolonged secondary injury consist of a cascade of pathophysiological processes. One important aspect of secondary injury is activation of phosphodiesterase 4 (PDE4) that leads to reduce cAMP levels in the injured spinal cord. We have developed an amphiphilic copolymer, poly (lactide-co-glycolide)-graft-polyethylenimine (PgP) that can deliver Rolipram, the PDE4 inhibitor. The objective of this work was to investigate the effect of rolipram loaded PgP (Rm-PgP) on secondary injury and motor functional recovery in a rat moderate contusion SCI model. We observed that Rm-PgP can increase cAMP level at the lesion site, and reduce secondary injury such as the inflammatory response by macrophages/microglia, astrogliosis by activated astrocytes and apoptosis as well as improve neuronal survival at 4 weeks post-injury (WPI). We also observed that Rm-PgP can improve motor functional recovery after SCI over 4 WPI.