- Anniversary/History
- Membership
- Publications
- Resources
- Education
- Events
- Outreach
- Careers
- About
- For Pain Patients and Professionals
Chronic postsurgical pain (CPSP) is a serious postoperative complication with high incidence, and its pathogenesis involves neuroimmune interactions and the breakdown of the blood-spinal cord barrier (BSCB), the decreased level of adheren junction (AJ)-related proteins is an important cause of BSCB injury. Vascular endothelial-cadherin (VE-cadherin) and p120 catenin (p120) constitute the endothelial barrier adheren junction. The Src/p120/VE-cadherin pathway is involved in the regulation of the endothelial barrier function. However, the role of the BSCB-AJ regulatory mechanism in CPSP has not been reported. In this study, we established a skin/muscle incision and retraction (SMIR) model and evaluated the paw withdrawal threshold (PWT), the effects of an Src inhibitor and p120 knockdown on p-Src, p120 and VE-cadherin expression, as well as BSCB-AJ function in rat spinal cord were observed to explore the regulation of BSCB-AJ function by the p-Src/p120/VE-cadherin pathway in promoting SMIR-induced CPSP. The levels of p-Src, p120 and VE-cadherin in the spinal cord were detected by Western blot. Meanwhile, BSCB permeability test was used to detect the changes in BCSB function. Finally, the spatial and temporal localization of p120 in spinal cord was detected by immunofluorescence. Our findings indicated that p-Src/p120/VE-cadherin could induce BSCB-AJ dysfunction and promote the development of CPSP.