I am a
Home I AM A Search Login

Papers of the Week


Papers: 22 Mar 2025 - 28 Mar 2025


2025 Mar 07


Cells


40136642


14


6

Role of Galactosylceramide Metabolism in Satellite Glial Cell Dysfunction and Neuron-Glia Interactions in Painful Diabetic Peripheral Neuropathy.

Authors

Xu X, Zhang Y, Li S, Liao C, Yang X, Zhang W

Abstract

Diabetic peripheral neuropathy (DPN) is a prevalent and disabling complication of diabetes, with painful diabetic peripheral neuropathy (PDPN) being its most severe subtype due to chronic pain and resistance to treatment. Satellite glial cells (SGCs), critical for maintaining dorsal root ganglion (DRG) homeostasis, undergo significant structural and functional changes under pathological conditions. This study investigated the role of galactosylceramide (GalCer), a key sphingolipid, in SGC dysfunction and neuron-glia interactions during DPN progression. Using a rat model of PDPN, we employed single-cell RNA sequencing (scRNA-seq), targeted mass spectrometry, and immunofluorescence analysis. The PDPN group exhibited transcriptional activation and structural reorganization of SGCs, characterized by increased SGC abundance and glial activation, evidenced by elevated Gfap expression. Functional enrichment analyses revealed disruptions in sphingolipid metabolism, including marked reductions in GalCer levels. Subclustering identified vulnerable SGC subsets, such as Cluster a, with dysregulated lipid metabolism. The depletion of GalCer impaired SGC-neuron communication, destabilizing DRG homeostasis and amplifying neurodegeneration and neuropathic pain. These findings demonstrate that GalCer depletion is a central mediator of SGC dysfunction in PDPN, disrupting neuron-glia interactions and exacerbating neuropathic pain. This study provides novel insights into the molecular mechanisms of DPN progression and identifies GalCer metabolism as a potential therapeutic target.