I am a
Home I AM A Search Login

Papers of the Week

Papers: 11 May 2024 - 17 May 2024

2024 May 16

Mol Pain


Reduced Capsaicin-Induced Mechanical Allodynia and Neuronal Responses in the DRG in the Presence of Overexpression.


Vroman R, Ishihara S, Fullam S, Wood MJ, Adamczyk NS, Lomeli N, Malfait F, Malfait AM, Miller RE, Markovics A


Transient Receptor Potential Vanilloid 1 (TRPV1) is a nonselective cation channel expressed by pain-sensing neurons and has been an attractive target for the development of drugs to treat pain. Recently, Src homology region 2 domain-containing phosphatase-1 (SHP-1, encoded by ) was shown to dephosphorylate TRPV1 in dorsal root ganglia (DRG) neurons, which was linked with alleviating different pain phenotypes. These previous studies were performed in male rodents only and did not directly investigate the role of SHP-1 in TRPV-1 mediated sensitization. Therefore, our goal was to determine the impact of overexpression on TRPV1-mediated neuronal responses and capsaicin-induced pain behavior in mice of both sexes. Twelve-week-old male and female mice overexpressing (Shp1-Tg) and their wild type (WT) littermates were used. overexpression was confirmed in the DRG of Shp1-Tg mice by RNA hybridization and RT-qPCR. and were found to be co-expressed in DRG sensory neurons in both genotypes. Functionally, this overexpression resulted in lower magnitude intracellular calcium responses to 200 nM capsaicin stimulation in DRG cultures from Shp1-Tg mice compared to WTs. , we tested the effects of overexpression on capsaicin-induced pain through a model of capsaicin footpad injection. While capsaicin injection evoked nocifensive behavior (paw licking) and paw swelling in both genotypes and sexes, only WT mice developed mechanical allodynia after capsaicin injection. We observed similar level of TRPV1 protein expression in the DRG of both genotypes, however, a higher amount of tyrosine phosphorylated TRPV1 was detected in WT DRG. These experiments suggest that, while SHP-1 does not mediate the acute swelling and nocifensive behavior induced by capsaicin, it does mediate a protective effect against capsaicin-induced mechanical allodynia in both sexes. The protective effect of SHP-1 might be mediated by TRPV1 dephosphorylation in capsaicin-sensitive sensory neurons of the DRG.