- Anniversary/History
- Membership
- Publications
- Resources
- Education
- Events
- Outreach
- Careers
- About
- For Pain Patients and Professionals
The global prevalence of diabetes is steadily rising, with an estimated 537 million adults affected by diabetes in 2021, projected to reach 783 million by 2045. A severe consequence of diabetes is the development of painful diabetic neuropathy (PDN), afflicting approximately one in every three diabetic patients and significantly compromising their quality of life. Current pharmacotherapies for PDN provide inadequate pain relief for many patients, underscoring the need for novel treatments that are both safe and effective. The Sigma 1 Receptor (S1R) is a ligand-operated chaperone protein that resides at the mitochondria-associated membrane of the endoplasmic reticulum. The S1R has been shown to play crucial roles in regulating cellular processes implicated in pain modulation. This study explores the potential of PW507, a novel S1R antagonist, as a therapeutic candidate for PDN. PW507 exhibited promising and properties in terms of ADME, toxicity, pharmacokinetics, and safety. In preclinical rat models of Streptozotocin-induced diabetic neuropathy, PW507 demonstrated significant efficacy in alleviating mechanical allodynia and thermal hyperalgesia following both acute and chronic (2-week) administration, without inducing tolerance and visual evidence of toxicity. To the best of our knowledge, this is the first report to evaluate an S1R antagonist in STZ-induced diabetic rats following both acute and 2-week chronic administration, offering compelling preclinical evidence for the potential use of PW507 as a promising therapeutic option for PDN.