I am a
Home I AM A Search Login

Papers of the Week

Papers: 18 Mar 2023 - 24 Mar 2023

Basic Science

Animal Studies, Molecular/Cellular, Neurobiology, Pharmacology/Drug Development

Musculoskeletal Pain

2023 Mar 15



P2X7-NLRP3-Caspase-1 signaling mediates activity-induced muscle pain in male but not female mice.


Hayashi K, Lesnak JB, Plumb AN, Rasmussen LA, Sluka KA


We developed an animal model of activity-induced muscle pain that is dependent on local macrophage activation and release of interleukin-1β (IL-1β). Activation of purinergic type 2X (P2X) 7 receptors recruits the NOD-like receptor protein (NLRP) 3 and activates Caspase-1 to release IL-1β. We hypothesized that pharmacological blockade of P2X7, NLRP3, and Caspase-1 would prevent development of activity-induced muscle pain in vivo and release of IL-1β from macrophages in vitro. The decrease in muscle withdrawal thresholds in male, but not female, mice was prevented by the administration of P2X7, NLRP3, and Caspase-1 inhibitors before induction of the model, whereas blockade of IL-1β before induction prevented muscle hyperalgesia in both male and female mice. Blockade of P2X7, NLRP3, Capsase-1, or IL-1β 24 hours, but not 1 week, after induction of the model alleviated muscle hyperalgesia in male, but not female, mice. mRNA expression of P2X7, NLRP3, Caspase-1, and IL-1β from muscle was increased 24 hours after induction of the model in both male and female mice. Using multiplex, increases in IL-1β induced by combining adenosine triphosphate with pH 6.5 in lipopolysaccharide-primed male and female macrophages were significantly lower with the presence of inhibitors of P2X7 (A740003), NLRP3 (MCC950), and Caspase-1 (Z-WEHD-FMK) when compared with the vehicle. The current data suggest the P2X7/NLRP3/Caspase-1 pathway contributed to activity-induced muscle pain initiation and early maintenance phases in male but not female, and not in late maintenance phases in male mice.