I am a
Home I AM A Search Login

Papers of the Week

Papers: 24 Jun 2023 - 30 Jun 2023

Basic Science

Animal Studies, Molecular/Cellular, Neurobiology, Pharmacology/Drug Development

Abdominal/Pelvic Pain, Inflammation/Inflammatory

2023 Jun 18

J Neurosci Res


Opposing effects of 5-HT1A receptor agonist buspirone on supraspinal abdominal pain transmission in normal and visceral hypersensitive rats.


Lyubashina OA, Sivachenko IB, Sushkevich BM, Busygina II


The serotonergic 5-HT1A receptors are implicated in the central mechanisms of visceral pain, but their role in these processes is controversial. Considering existing evidences for organic inflammation-triggered neuroplastic changes in the brain serotonergic circuitry, the ambiguous contribution of 5-HT1A receptors to supraspinal control of visceral pain in normal and post-inflammatory conditions can be assumed. In this study performed on male Wistar rats, we used microelectrode recording of the caudal ventrolateral medulla (CVLM) neuron responses to colorectal distension (CRD) and electromyography recording of CRD-evoked visceromotor reactions (VMRs) to evaluate post-colitis changes in the effects of 5-HT1A agonist buspirone on supraspinal visceral nociceptive transmission. In rats recovered from trinitrobenzene sulfonic acid colitis, the CRD-induced CVLM neuronal excitation and VMRs were increased compared with those in healthy animals, revealing post-inflammatory intestinal hypersensitivity. Intravenous buspirone (2 and 4 mg/kg) under urethane anesthesia dose-dependently suppressed CVLM excitatory neuron responses to noxious CRD in healthy rats, but caused dose-independent increase in the already enhanced nociceptive activation of CVLM neurons in post-colitis animals, losing also its normally occurring faciliatory effect on CRD-evoked inhibitory medullary neurotransmission and suppressive action on hemodynamic reactions to CRD. In line with this, subcutaneous injection of buspirone (2 mg/kg) in conscious rats, which attenuated CRD-induced VMRs in controls, further increased VMRs in hypersensitive animals. The data obtained indicate a shift from anti- to pronociceptive contribution of 5-HT1A-dependent mechanisms to supraspinal transmission of visceral nociception in intestinal hypersensitivity conditions, arguing for the disutility of buspirone and possibly other 5-HT1A agonists for relieving post-inflammatory abdominal pain.