I am a
Home I AM A Search Login

Papers of the Week


Papers: 18 May 2024 - 24 May 2024


2024 May 21


Pharmacol Ther


38782121

Neurobiological mechanisms of botulinum neurotoxin-induced analgesia for neuropathic pain.

Authors

Bagues A, Hu J, Alshanqiti I, Chung MK

Abstract

Botulinum neurotoxins (BoNTs) are a family of neurotoxins produced by Clostridia and other bacteria that induce botulism. BoNTs are internalized into nerve terminals at the site of injection and cleave soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins to inhibit the vesicular release of neurotransmitters. BoNTs have been approved for multiple therapeutic applications, including the treatment of migraines. They have also shown efficacies for treating neuropathic pain, such as diabetic neuropathy, and postherpetic and trigeminal neuralgia. However, the mechanisms underlying BoNT-induced analgesia are not well understood. Peripherally administered BoNT is taken up by the nerve terminals and reduces the release of glutamate, calcitonin gene-related peptide, and substance P, which decreases neurogenic inflammation in the periphery. BoNT is retrogradely transported to sensory ganglia and central terminals in a microtubule-dependent manner. BoNTs decrease the expression of pronociceptive genes (ion channels or cytokines) from sensory ganglia and the release of neurotransmitters and neuropeptides from primary afferent central terminals, which likely leads to decreased central sensitization in the dorsal horn of the spinal cord or trigeminal nucleus. BoNT-induced analgesia is abolished after capsaicin-induced denervation of transient receptor potential vanilloid 1 (TRPV1)-expressing afferents or the knockout of substance P or the neurokinin-1 receptor. Although peripheral administration of BoNT leads to changes in the central nervous system (e.g., decreased phosphorylation of glutamate receptors in second-order neurons, reduced activation of microglia, contralateral localization, and cortical reorganization), whether such changes are secondary to changes in primary afferents or directly mediated by trans-synaptic, transcytotic, or the hematogenous transport of BoNT is controversial. To enhance their therapeutic potential, BoNTs engineered for specific targeting of nociceptive pathways have been developed to treat chronic pain. Further mechanistic studies on BoNT-induced analgesia can enhance the application of native or engineered BoNTs for neuropathic pain treatment with improved safety and efficacy.